Тестовая страница, CSS

Содержание

Причина аномально высокой температуры кипения воды

Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.
Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались. бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотность вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.
Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью [4,18 Дж/(г К)], поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.
В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Эта вытекает из принципа Ле Шателье. Действительно, пусть. лед и жидкая вода находятся в равновесии при О°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при О°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.
Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, Межъядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии -aea?eaecaoee. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных — орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.
Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.
В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме, в которой водородные связи показаны пунктиром. Схема объемной структуры льда изображена на рисунке. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.
При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты — как бы обломки структуры льда, — состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.
По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.
При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды.
Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

Агрегатные состояния воды

Физические свойства воды аномальны, что объясняется приведёнными выше данными о взаимодействии между молекулами воды. Вода – единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях – жидком, твёрдом и газообразном.

Плотность воды в твёрдом и жидком состоянии

Плавление льда при атмосферном давлении сопровождается уменьшением объёма на 9%. Плотность жидкой воды при температуре, близкой к нулю, больше, чем у льда. При 00С 1 грамм льда занимает объём 1,0905 кубических сантиметров, а 1 грамм жидкой воды занимает объём 1,0001 кубических сантиметров. И лёд плавает, оттого и не промерзают обычно насквозь водоёмы, а лишь покрываются ледяным покровом.
Температурный коэффициент объёмного расширения льда и жидкой воды отрицателен при температурах соответственно ниже — 2100 С и + 3,980 С.

Теплоёмкость воды

Теплоёмкость при плавлении возрастает почти вдвое и в интервале от 00 С до 1000 С почти не зависит от температуры

Температуры плавления и кипения воды в сравнении с другими водородными соединениями элементов главной подгруппы YI группы таблицы Менделеева

Вода имеет незакономерно высокие температуры плавления и кипения в сравнении с другими водородными соединениями элементов главной подгруппы VI группы таблицы Менделеева.

Диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р—Т.
На рисунке приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.
Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.
Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА (рис. 3), отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом — сосуществуют. Кривая ОА называется кривой равновесия жидкость—пар или кривой кипения. В таблице приведены значения давления насыщенного водяного пара при нескольких температурах.

http://www.likt590.ru/project/voda/10/FIZ.html

Аномальные свойства воды: причины, значение

Люди привыкли к воде и считают ее обычным веществом. Они часто воспринимают ее как нечто само собой разумеющееся до тех пор, пока засуха не начнет угрожать посевам и запасам питьевой воды, или сильное наводнение не создаст угрозу жизни и имуществу. Многие не осознают, что структура воды и ее аномальные свойства обеспечивают существование жизни на Земле.
Один из ранних греческих философов, Фалес Милетский (640-546 гг. до н. э.), исследовал универсальный характер воды. Он считал ее основным элементом, из которого рождается все. Обилие воды было очевидным, но Фалес заметил, что она является единственным веществом, естественным образом присутствующим на Земле одновременно в трех разных состояниях: твердом, жидком и газообразном. В холодный зимний день снег и лед покрывают поля, рядом течет река, а над головой плывут облака.

Формы материи

Все вещества существуют в трех различных состояниях, которые зависят от температуры и давления. Твердые тела обладают определенной формой и имеют кристаллическую внутреннюю структуру. По этому определению вещество, подобное стеклу, будет считаться высоковязкой жидкостью, поскольку оно не обладает кристаллическим строением. Твердые тела склонны противостоять внешним воздействием. Они могут быть преобразованы в жидкость путем нагрева. Температура замерзания воды при давлении в 1 атмосферу равна 0 °С, ниже которой она существует в виде льда.
Жидкость, в отличие от твердого тела, не обладает твердостью и не имеет определенной формы. У нее есть объем, и она принимает форму сосуда, в котором хранится. Внешнее воздействие вынуждает ее течь. Вода представляет собой жидкость между температурами замерзания и кипения (100 °С). Жидкости могут переходить в газообразную фазу при нагреве выше точки кипения.
Газ не имеет ни формы, ни определенного объема. Он принимает форму и занимает объем сосуда, в котором находится. Газ расширяется и сжимается с изменением температуры и давления и способен легко диффундировать в другие газы.

Точки кипения и замерзания

Аномальными свойствами воды являются ее необычно высокие температуры кипения и замерзания по сравнению с другими соединениями с аналогичной молекулярной структурой. Другие подобные вещества в обычных условиях являются газами. Ожидается, что вода с ее более низкой молекулярной массой, чем аналогичные соединения, должна иметь более низкие температуры кипения и замерзания. Однако из-за полярной природы ее молекулы и водородных связей температура ее кипения равна 100 °C, а замерзания – 0 °C. Для сравнения, соответствующие значения у сероводорода H2S равны -60 °C и -84 °C, у селеноводорода H2Se этот показатель составляет -42 °C и -64 °C и у теллуроводорода -2 °C и -49 °C.

Твердая фаза

Как правило, с понижением температуры вещества становятся более плотными, и вода не является исключением. Ее плотность при 25 °C составляет 0,997 г/мл и увеличивается с до максимальной (1 г/мл) при T = 4 °C. В метрической системе измерения килограмм определяется как масса 1 л воды с максимальной плотностью. Между 4 °C и точкой замерзания 0 °C происходит удивительная вещь, которая наблюдается у очень небольшого числа веществ. Вода постепенно расширяется, становясь менее плотной. Плотность льда при 0 °C составляет около 0,917 г/мл. Молекулы воды образуют кристаллы в форме тетраэдра (четырехсторонней фигуры, каждая грань которой представляет собой равносторонний треугольник). Поскольку плотность твердой фазы меньше, чем жидкой, лед плавает. При замораживании объем воды увеличивается на 1%.
Очень важно, что лед расширяется и плавает на поверхности. Из-за этого зимой лопаются водопроводы и появляются выбоины на дорогах. Замерзание и таяние воды в значительной степени ответственно за разрушение скал и образование почв. Кроме того, если бы озера и потоки замерзали снизу вверх, то водная жизнь вообще перестала бы существовать, а климатические и погодные условия резко изменились.

Теплоемкость

Еще одним аномальным свойством воды является ее чрезвычайно высокая способность поглощать тепло без значительного повышения температуры. Например, летнее солнце на пляже нагревает песок до такой степени, что становится невозможно по нему ходить. Вода при этом остается прохладной. Оба вещества поглощают равное количество тепловой энергии, но температура песка выше. Пустой железный котелок, висящий над огнем, быстро раскалится докрасна, но если он заполнен водой, то его нагрев происходит постепенно. Высокая теплоемкость воды делает ее хорошей охлаждающей жидкостью в конденсаторах и автомобильных радиаторах, предотвращающих двигатели от перегрева. Ее значение в 5 раз превышает теплоемкость песка и примерно в 10 раз – железа.
Умеренный климат в прибрежных районах является результатом поглощения в течение дня огромного количества солнечной тепловой энергии водой и медленного высвобождения ее ночью. Внутренние районы вдали от побережья обычно испытывают гораздо более высокие экстремальные температуры. Огромные океаны на Земле (около 75% площади поверхности) отвечают за смягчение климата на нашей планете, поддерживая существование жизни.

Теплота плавления и испарения

С теплоемкостью связана теплота фазового перехода. Это количество тепловой энергии, поглощаемой или высвобождаемой веществом, которое изменяется в фазе (от жидкого до твердого состояния, или наоборот, и от жидкого до газообразного, или наоборот) без изменения температуры. Необычайно высокие значения удельной теплоты плавления (332,4 кДж/кг) и испарения (2256,2 кДж/кг) – очередные аномальные физические свойства воды. При замерзании выделяется такое же количество тепла, которое поглощается в процессе плавления.

Практическим примером использования удельной теплоты плавления воды является использование льда для охлаждения напитков в изолированном кулере. В процессе таяния лед поглощает тепловую энергию напитков, сохраняя их прохладными. Емкость с водой в теплице в холодную зимнюю ночь смягчит температуру в помещении из-за тепла, выделяемого при замерзании. Конденсация пара высвобождает то же количество тепла, которое поглощается в процессе испарения. Удельная теплота испарения в 5 раз превышает теплоту, необходимую для повышения температуры от 0 до 100 °C. Аномальное свойство воды хранить большое количество накопленной тепловой энергии делает паровое отопление эффективным. В процессе конденсации пар высвобождает накопленную тепловую энергию. Дневная гроза в жаркий летний день – еще один пример высвобождения тепловой энергии в верхних слоях атмосферы при конденсации горячего влажного воздуха. Даже ураган является примером влияния перераспределения огромного количества тепловой энергии, поглощенной тропическими океанами.
Системы испарительного охлаждения работают наоборот. Вода в процессе испарения поглощает тепловую энергию из воздуха, охлаждая его.

Универсальный растворитель

Растворитель способен растворять другое вещество с образованием гомогенной смеси (раствора) на молекулярном уровне. Еще одним аномальным свойством воды в химии благодаря ее полярной природе является ее способность растворять другие полярные соединения – соли, спирты, карбоксильные соединения и т. д. В воде растворяется больше веществ, чем в любом другом растворителе. В ней можно найти более половины известных химических элементов, некоторые в высоких концентрациях, а другие – только в следовых количествах. Например, концентрация насыщения хлорида натрия составляет около 36 г на 100 мл, а карбоната кальция – около 0,0015 г. Способность воды растворять вещество зависит от его химического состава, силы химических связей элементов, температуры и рН.
Неполярные соединения, в том числе большинство углеводородов, растворяются в низких или следовых количествах. Например, масла, как правило, плавают на поверхности воды.

Поверхностное натяжение

К аномальным свойствам воды относят и ее самое высокое (после ртути) поверхностное натяжение по сравнению с любой другой жидкостью. Это сила притяжения молекул, расположенных под поверхностью и тех, которые находятся на границе раздела жидкость-воздух. Она удерживает воду от растекания. Полярные соединения, как правило, имеют гораздо более высокое поверхностное натяжение, чем неполярные. И вода не является исключением. При 20 °С данный показатель равен 0,07286 Н/м (у этилового спирта – 0,0228 Н/м).
Без внешнего воздействия капля H2O принимает форму сферы, поскольку эта фигура обладает наименьшей площадью поверхности на единицу объема. Капли дождя являются крошечными пулями, которые при длительном воздействии разрушают горные породы. По этой же причине объекты, более тяжелые, чем вода, могут удерживаться на ее поверхности. Насекомые способны ходить по ней, а лезвие бритвы – плавать.
Водородная связь определяет аномальное свойство воды смачивать большинство поверхностей. Такие вещества считаются гидрофильными. Вода способна подниматься по стенкам стакана и других емкостей. Другие вещества, такие как масла, жиры, воск и синтетика (полипропилен и т. д.), не намокают. Они являются гидрофобными. Мембранные фильтровальные картриджи с размером пор менее 1 мкм изготавливают из гидрофобных полимеров с помощью смачивающих агентов, снижающих поверхностное натяжение воды, чтобы последняя могла проникнуть и оставаться в них. Это явление называется капиллярным эффектом. Он отвечает за движение воды в почве и по корням растений и крови по кровеносным сосудам.

Аномальные свойства воды и их значение для жизни

H2O является неотъемлемым компонентом существования всего живого. Это объясняет недавний интерес к обнаружению воды в других частях Вселенной. Все известные биохимические процессы происходят в водной среде. Большинство живых существ содержат 70–80% H2O по весу.
Кроме того, вода играет значительную роль в процессе фотосинтеза. Растения используют лучистую энергию солнца для превращения воды и углекислого газа в углеводы: 6CO2 + 6H2O + 672 ккал -> C6H12O6 + 6O2. Фотосинтез – самая основная и важная химическая реакция на Земле. Он поставляет питательные вещества, прямо или косвенно, всем живым организмам и является основным источником атмосферного кислорода.

Аномальные свойства воды и их причины

Способность элементов формировать соединения зависит от способности их атомов отдавать или принимать электроны. Элементы первого типа становятся положительно заряженными ионами (катионами), а второго – отрицательно заряженными анионами.
Способность элемента взаимодействовать с другими элементами для образования соединений называется валентностью. Она соответствует количеству полученных или отданных электронов. Для неорганических соединений алгебраическая сумма валентных чисел элементов равна нулю. Электростатическое притяжение противоположно заряженных ионов с образованием соединения называется ионной связью.

Элементы, которые образуют воду (водород и кислород), существуют отдельно в молекулах H2 и O2, содержащих по два атома. Они удерживаются вместе благодаря обмену электронной парой в химической связи, называемой ковалентной. Она намного сильнее ионной. Два атома, удерживаемые вместе ковалентной связью, образуют намного более устойчивую молекулу, чем ее составные части. В ней водород объединяется кислородом посредством общих электронных пар. Это уникальное распределение электронов в образованном химическом соединении заставляет атомы H располагаться по отношению к O под углом 104,5°.
Аномальные физические свойства воды объясняются ее структурой и химической связью.
Атом кислорода оказывает относительно сильное воздействие на общую пару электронов, в результате чего атомы водорода становятся электроположительными, а атом кислорода – электроотрицательной областью. Поскольку положительно и отрицательно заряженные участки распределены неравномерно по отношению к центральной точке, молекула воды является полярной.
Такая ее природа заставляет ее становиться электростатически привлекательной для других молекул H2O, а также ионов и контактных поверхностей с заряженными участками. Электроположительные атомы водорода притягиваются к электроотрицательным атомам кислорода соседних молекул воды. Это явление называется водородной связью. Ее прочность составляет всего около 10% ковалентной, но она отвечает за большинство аномальных физических свойств воды. К ним относятся высокие температуры замерзания и кипения, теплоемкость, удельная теплота плавления и испарения, растворимость и поверхностное натяжение.
Водородная связь отвечает за поддержание целостности молекулы H2O во время химических реакций. В то время как другие соединения подвергаются ионизации, сама вода сохраняет свою химическую целостность. Лишь относительно небольшое число молекул ионизируется в водород и гидроксильные ионы. Поэтому H2O является относительно плохим проводником электрического тока. Специфическое сопротивление теоретически чистой воды составляет 18,3 МОм•см, в то время как питьевая имеет удельное сопротивление менее 10 000 Ом•см. Таким образом можно легко проверить чистоту H2O.

Аномальные свойства воды объясняются наличием водородных связей, из-за которых имеет место низкая плотность льда. Вдоль них при замерзании располагаются молекулы, что приводит к расширению вещества. По этой причине лед плавает на поверхности воды. Повышенное давление снижает температуру плавления. Давление, создаваемое лезвием конька, топит лед, создавая слой, обеспечивающий изящное скольжение. Даже при чрезвычайно низких температурах высокое давление ослабляет кристаллическую решетку. Это является причиной того, что огромные ледяные массы, такие как ледники, постепенно движутся.

Дипольный момент

Полярная природа молекулы воды заставляет ее ориентироваться в электрическом или магнитном поле. Электроотрицательный атом кислорода выстраивается к положительному полюсу, а электроположительные атомы водорода – в направлении отрицательного. Вода имеет исключительно большой дипольный момент, представляющий собой произведение расстояния между зарядами, умноженное на величину заряда.
Диэлектрическая проницаемость является еще одним свойством, связанным с дипольным моментом. Молекулы воды путем выравнивания в электрическом поле стремятся нейтрализовать его и создать устойчивость к передаче электростатического заряда. Диэлектрическая проницаемость вещества определяется ? в уравнении F = Q1•Q2/?•r 2 , где F – сила между двумя зарядами Q, разделенная расстоянием r в среде.
По мере увеличения диэлектрической проницаемости сила между зарядами уменьшается. Высокая диэлектрическая постоянная уменьшает силу притяжения ионов, что объясняет аномальные химические свойства воды растворять самые разнообразные вещества.

Заключение

Для людей вода – это обычное вещество, которое часто принимается как должное. Несмотря на то что аномальные свойств воды объясняются на атомном уровне, ее значение действительно велико. Очевидно, что она необходима для существования жизни на Земле. Аномальные свойства воды, кратко говоря, позволяют ей служить медиатором химических и биохимических процессов, формировать нашу природную среду и участвовать в создании климата и погоды.

http://www.syl.ru/article/368647/anomalnyie-svoystva-vodyi-prichinyi-znachenie

Причина аномально высокой температуры кипения воды

А.существование водородных связей между молекулами
Б.наличие в молекулах ковалентных полярных связей
В.молекулярная кристаллическая решетка
Г.геометрическая форма молекул

Ответ А. существование водородных связей между молекулами.

Другие вопросы из категории

гмл). Определите массовую долю Н 2С

Читайте также

плавления, чем сероводород?
рассчитайте, во сколько раз увеличивается объем вещества в результате полного испарения этой жидкости при температуре кипения.
связь С-Н в СН4.
б)Этанол является функциональным изомером диэтилового эфира.
в)Этиловый спирт является жидкостью и хорошо растворяется в воде потому,что образует с ней водородные связи.
г) Спирты имеют высокие температуры кипения потому ,что образуют межмолекулярные водородные связи.
д) Водородные связи влияют на химические свойства веществ.
а) циклогексен; б) 1,2-диметилциклобутан;
в) 3,3-диметилбутин-1; г) гексадиен-1,4.
19. Вещество, при взаимодействии с водой в присутствии солей ртути образующее альдегид:
а) этан; б) этилен; в) ацетилен; г) метилацетилен.
27. Какое из перечисленных веществ имеет самую высокую температуру кипения: а) пропанол-2; б) бутанол-1; в) диэтиловый эфир; г) этанол.
28. Какая из перечисленных реакций характерна для предельных
одноатомных спиртов:
а) гидролиза; б) гидратации;
в) дегидратации; г) полимеризации.
32. По каким признакам можно отличить водный раствор глицерина от водного раствора этанола:
а) по плотности; б) по действию на гидроксид меди (II);
в) по цвету; в) по действию на щелочные металлы.
33 .У какого из перечисленных соединений наиболее сильно выражены кислотные свойства:
а) угольная кислота; б) фенол; в) вода; г) метанол.
34. Каким образом можно отличить спиртовой раствор фенола от спиртового раствора глицерина :
а) по реакции с натрием; б) по действию раствора хлорида железа (III);
в) по реакции с гидроксидом натрия; г) по изменению окраски фенолфталеина.

http://himia.neznaka.ru/answer/645582_pricina-anomalno-vysokoj-temperatury-kipenia-vody/

Аномальные свойства воды, или удивительное рядом

Академическая наука до сих пор не смогла дать рациональное объяснение всем аномальным свойствам воды.
Целый ряд свойств воды выпадает из общих закономерностей и правил таких наук как физика и химия. Эти свойства не соответствуют законам «периодической системы», разработанной гениальным ученым-химиком Дмитрием Ивановичем Менделеевым.
Про общие физические и химические свойства воды, мы писали в нашем материале – ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ В ЖИДКОМ СОСТОЯНИИ ( читать >> ).
В этом же материале, мы кратко перечислим основные аномальные свойства воды.

Аномальные свойства воды. Замерзание и кипение

Температуры замерзания и кипения воды не соответствуют общим закономерностям и законам химии. Так мы знаем, что вода в реальной жизни замерзает при 0°C, а кипит при 100°C, в то время как в соответствии с общими правилами химии эти процессы должны проходить при -90°C (минус девяносто) и -70°C (минус 70) соответственно.

Уникальные термические свойства воды

Вода имеет уникальную по своей величине аномальную теплоемкость равную 4,18 кДж (кг-К). Это означает, что вода медленно охлаждается и медленно нагревается.
Вода является эффективным регулятором температур, она ограничивает резкие перепады температур. Более подробно с этим ее свойством вы можете ознакомиться в нашей статье – Удельная теплоемкость воды, или почему мы такие, какие есть.

Температурная яма

Наибольшая скорость нагрева и охлаждения воды происходит в так называемой «температурной яме», которая образуется вследствие того, что в районе 37 °C теплоемкость у воды наименьшая.
Как мы видим, температура человеческого тела 36,6 °C близка к этому значению.

Эффект Мпембы – эффект горячей воды

Удивительно, но факт – горячая вода замерзает быстрее холодной, что противоречит логике и общему восприятию вещей.

Температура воды + 3,98 °C

Как мы уже отметили выше, температура + 3,98 °C, является для воды важным значением. При понижении температуры до этого уровня вода ведет себя в соответствии с общими законами и правилами этих наук. При дальнейшем понижении температуры у воды начинают проявляются ее аномальные свойства.
При температуре + 3,98 °C у воды плотность имеет наибольшее значение, а объем наименьший.

Объем и плотность

Еще одним важным для всех нас является ее аномальное свойство при замерзании увеличиваться в объеме, тем самым уменьшая свою плотность. Уточним, что до + 3,98 °C вода ведет в соответствии с общими законами химии и физики, а далее проявляются ее аномальные свойства.

Поверхностное натяжение

Еще одним удивительным и во многом аномальным свойством воды является ее поверхностное натяжение.
Хорошо всем известный пример демонстрирует, как аккуратно положенная на воду металлическая швейная игла плавает на ее поверхности, что во многом удивительно. Ведь плотность метала гораздо больше плотности воды.
Вся жизнь на Земле своим существованием во многом обязано именно этому свойству воды.

Вода — отличный растворитель

Вода является отличным растворителем, она удивительно легко растворяет большое количество самых разнообразных веществ и газов. И что тоже весьма важно, так же легко их отдает. Например, благодаря именно этому свойству после дождя мы чувствуем удивительную свежесть – дождь очищает воздух.

Вода и магнитное поле

Под воздействием магнитного поля у воды меняется ее способность к растворению веществ, изменяется скорость, проходящих в ней, химических реакций.
Аномальные свойства воды еще раз подтверждают общеизвестное высказывание — удивительное рядом.

http://vodamama.com/anomalnye-svojstva.html

Причина аномально высокой температуры кипения воды

Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.
Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались. бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотность вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.
Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью [4,18 Дж/(г К)], поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.
В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Эта вытекает из принципа Ле Шателье. Действительно, пусть. лед и жидкая вода находятся в равновесии при О°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при О°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.
Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, Межъядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии -aea?eaecaoee. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных — орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.
Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.
В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме, в которой водородные связи показаны пунктиром. Схема объемной структуры льда изображена на рисунке. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.
При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты — как бы обломки структуры льда, — состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.
По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.
При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды.
Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

Агрегатные состояния воды

Физические свойства воды аномальны, что объясняется приведёнными выше данными о взаимодействии между молекулами воды. Вода – единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях – жидком, твёрдом и газообразном.

Плотность воды в твёрдом и жидком состоянии

Плавление льда при атмосферном давлении сопровождается уменьшением объёма на 9%. Плотность жидкой воды при температуре, близкой к нулю, больше, чем у льда. При 00С 1 грамм льда занимает объём 1,0905 кубических сантиметров, а 1 грамм жидкой воды занимает объём 1,0001 кубических сантиметров. И лёд плавает, оттого и не промерзают обычно насквозь водоёмы, а лишь покрываются ледяным покровом.
Температурный коэффициент объёмного расширения льда и жидкой воды отрицателен при температурах соответственно ниже — 2100 С и + 3,980 С.

Теплоёмкость воды

Теплоёмкость при плавлении возрастает почти вдвое и в интервале от 00 С до 1000 С почти не зависит от температуры

Температуры плавления и кипения воды в сравнении с другими водородными соединениями элементов главной подгруппы YI группы таблицы Менделеева

Вода имеет незакономерно высокие температуры плавления и кипения в сравнении с другими водородными соединениями элементов главной подгруппы VI группы таблицы Менделеева.

Диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р—Т.
На рисунке приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.
Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.
Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА (рис. 3), отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом — сосуществуют. Кривая ОА называется кривой равновесия жидкость—пар или кривой кипения. В таблице приведены значения давления насыщенного водяного пара при нескольких температурах.

http://www.likt590.ru/project/voda/10/FIZ.html

Справочник химика 21

Химия и химическая технология

Водородная связь температуры кипения

Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]
В то же время соединения серы проявляют незначительные признаки образования водородных связей температуры кипения изомерных тиолов и тиоэфиров мало отличаются друг от друга (табл. 9.5). [c.176]
Электронная структура н пространственное строение молекулы аммиака рассмотрены в 43. В жидком аммиаке молекулы NHj ((i=l,48D) связаны между собой водородными связями, что обусловливает сравнительно высокую температуру кипения аммиака (—33,4°С), не соответствующую его малой молекулярной массе (17 а. е. м.). [c.399]
Первичные и вторичные амины образуют межмолекулярные водородные связи, третичные амины к ассоциации неспособны. Соответственно этому температуры кипения вторичных аминов выше, чем температуры кипения первичных (рост молекулярного веса), но третичные амины кипят ниже вторичных. У фосфинов, не дающих водородных связей, температуры кипения неизменно растут от первичных фосфинов к вторичным и третичным [c.60]

Аммиак ЫНз — бесцветный газ с резким запахом с температурой кипения -33,35°С и температурой плавления -77,75°С. Аномально высокие температуры кипения и плавления аммиака объясняются ассоциацией его молекул вследствие высокой полярности их и образования водородных связей. Критическая температура аммиака равна 132,4°С. Аммиак хорошо растворим в воде (750 литров в литре), ограниченно растворим в органических растворителях. [c.187]
Необычные свойства воды, которые были описаны в разд. 9.4, объясняются чрезвычайно сильным взаимным притяжением ее молекул. Это мощное взаимодействие присуще структурам с так называемой водородной связью. Температуры плавления и кипения гидридов некоторых неметаллов приведены на рис. 9.5. В рядах родственных соединений наблюдается их изменение в нормальной последовательности. Кривые, проведенные через точки для НгТе, НгЗе и Нг5, имеют направления, которые и следовало ожидать, однако при их экстраполяции получаются значения для температур плавления льда и кипения воды, приблизительно равные —100 и —80°С. Наблюдаемое же значение температуры плавления льда на 100 °С выше, а температура кипения воды на 180 °С выше, чем можно было бы ожидать, если вода была бы нормальным веществом аналогичные, но несколько меньшие отклонения показывают фтористый водород и аммиак. [c.249]
Молекула Н3Р, как и H3N, имеет форму тригональной пирамиды, (dpN = 0,142 нм, НРН = 93,5°). Ее электрический момент диполя значительно меньше (0,18 10 Кл-м), чем у молекулы H3N. Водородная связь между молекулами НдР практически не проявляется, поэтому фосфин характеризуется более низкими температурами плавления (—133,8 С) и кипения (—87,42°С), чем аммиак. Фосфин — чрезвычайно ядовитый газ с неприятным запахом. [c.368]
Межмолекулярные водородные связи могут образовываться между молекулами одного и того же вещества и разных веществ, а также между молекулами ПАВ и растворителя [217]. В результате такого взаимодействия изменяются важнейшие физико-химические свойства исходных соединений увеличивается молекулярная масса в зависимости от разбавления и типа разбавителя, образуются ассоциаты с аномалией температур плавления и кипения, может измениться растворимость ПАВ. [c.204]
Энергия водородных связей обычно лежит в пределах 8—40 кДж/моль. Наличие водородных связей является причиной аномально высоких температур кипения и плавления некоторых веществ, так как на разрыв водородных связен требуется дополнительная затрата энергии. [c.71]
Р с ш с н II е. Кислород более электроотрицательный элемент, чем сера. Поэтому между молекулами воды возникают более прочные водородные связи, чем между молекулами сероводорода , Разрыв этих связен, необходимый для перехода воды в газообразное состояние, требует значительной затраты энергии, что и приводит к аномальному повышению температуры кипения воды. [c.71]

Многие наиболее важные свойства воды обусловлены водородными связями. Наличие водородных связей во льду и в жидкой воде определяет неожиданно высокие температуры плавления и кипения воды по сравнению с другими водородными соединениями элементов группы VI периодической системы-НгЗ, НзЗе и НзТе. Аналогичные аномалии, вызванные теми же причинами, обнаруживают жидкий аммиак и фтористый водород (рис. 14-19). Однако в аммиаке водородная связь выражена менее сильно, [c.619]
Водородные связи между молекулами воды объясняют аномалию в температурах кипения гидридов. Так, у гидридов элементов 6-й группы от НоТе к НгЗ температура кипения понижается, и только у НзО она резко повышена благодаря ассоциации ее молекул через Н-связи. Аналогичную аномалию проявляет МНд в пятой и НР в седьмой группе элементов. [c.139]
Наиболее удобным индикатором водородной связи является температура кипения, так как ее легко измерить. Так, температуры кипения спиртов КОН больше, чем соответствующих меркаптанов К8Н.. Простые эфиры даже с большой молекулярной массой более летучи, [c.132]
В рядах сходных соединений температуры кипения и теплоты парообразования обычно увеличиваются с ростом молекулярной массы. Однако при переходе от HF к H I и от Н2О к H2S температура кипения и теплота парообразования, наоборот, значительно уменьшаются (рис. 1.69). Это объясняется тем, что между молекулами HF и между молекулами Н2О образуются сильные водородные связи. [c.133]
В неорганической химии водородные связи уже давно известны они обусловливают, в частности, аномально высокие температуры кипения воды и фтористого водорода, благодаря им боран существует в виде димера даже при высокой температуре. [c.642]
Однако анализ температур кипения водородных соединений элементов IV—VI групп указывает на аномальное поведение аммиака ЫНз, воды Н2О и фтороводорода НР(в) по сравнению с водородными аналогами азота, кислорода и фтора соответственно, что обусловлено действием более эффективных межмолекулярных сил, которые носят название водородной связи. Единственный электрон атома водорода обусловливает возможность образования им только одной ковалентной связи. Однако если эта связь сильно полярна, например в соединениях водорода с наиболее электроотрицательными элементами (Г, О, Ы), то атом водорода приобретает некоторый положительный заряд. Это позволяет электронам другого атома приблизиться [c.38]
Вещества, молекулы которых соединены водородными связями, отличаются по своим свойствам от веществ, аналогичных им по строению молекул, но не образующих водородные связи. Температуры плавления и кипения соединений с водородом элементов подгруппы IVA, в которых нет водородных связей, плавно понижаются с уменьшением номера периода (рис. 14.2). У соединений с водородом элементов подгрупп VA—VIIA наблюдается нарушение этой зависимости. Три вещества, молеку- [c.250]
При образовании водородной связи изменяются межъядерные расстояния в молекуле, связь К-Н удлиняется, изменяется электронная структура молекул. Наличие водородных связей сказывается на ряде физических свойств систем, их спектральных и диэлектрических характеристиках. Жидкости и кристаллы, в которых имеет место образование ассоциатов и сольватов, характеризуются повышенными температурами кипения и плавления. [c.97]
Энергия водородных связей. Водородную связь обычно изображают О—Н. 0, где сплошная линия соответствует обычной связи О—Н в исходном соединении (например, в воде Н—О—Н или метиловом спирте СНд—О—Н). Точечная линия показывает другую связь, образованную водородом. Эта связь называется водородной связью. Эту связь часто обозначают точками, чтобы подчеркнуть, что она гораздо слабее обычной ковалентной связи. Температуры кипения, приведенные на рис. 17-14, показывают, что водородная связь должна быть гораздо более прочной, чем обычные вандерваальсовы силы. Из экспериментов известно, что в большинстве случаев при образовании водородных связей выделяется энергия в количестве от 3 до 10 кшлЫоль. [c.471]
I В ряду Н1—НВг—НС1 температуры кипепия и плавления изменяются весьма закономерно (табл. 24), тогда как при переходе к НР оии резко возрастают Как уже говорилось в 47, это обусловлено ассоциацией молекул фтороводорода в результате возиик-иовения между ними водородных связей. Как показывает определение плотности пара, вблизи температуры кипения газообразный (Ьтороводород состоит из агрегатов, имеющих средний состав (НР) . При дальнейшем нагревании эти агрегаты постепенно распадаются, причем лишь около 90 °С газообразный НР состоит из простых молекул. [c.361]
Большинство известных органосилилгидразинов являются бесцветными подвижными жидкостями, перегоняющимися в вакууме и стойкими к нагреванию. Силилирование увеличивает температуры кипения, как правило, очень незначительно, так как имеет место балансирование между увеличением массы молекулы и снижением тенденции к образованию водородных связей. Температура плавления триалкнлсилилгидразинов лежит ниже —100 С. Трифенилсил ил гидразин является твердым при комнатной температуре. [c.252]
Полярность связи N — Н обусловливает между молекулами ИдЫ водородную связь. Поэтому температуры плавления (—77,75 С) и кипения (—33,42°С) аммиака довольно высоки, он характеризуется значительной энтальпией испарения и легко сжижается. На этом основано его применение в холодильных маитинах. Жидкий аммиак хранят в стальных баллонах. [c.347]
Водородная связь. Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств. Это проявляется, например, в значениях температур плавления и кипения подобных соединений. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают, Это объясняется усилением взанмиога притяжения молекул, чтб связано с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними (см. 48). Так, в ряду H I—НВг—HI температуры плавления равны, соответственно, [c.154]
Энергия подородной связи значительно меньше энергии обычной ковалентной связи (150—400 кДж/моль). Она равна примерно 8 кДж/моль у соединений азота и достигает около 40 кДн [и. а первые два представителя (метиловый и метилэгало-вый) при нормальных условиях — газьг Это обусловлено практической невозможностью образования между молекулами эфира водородных связей. [c.50]
Мфкагттаны по свойствам довольно существенно отличаются 01 спиртов (табл. 19.1). Температуры юшения тиолов ниже температур кипения соответствующих спиртов, что связано с меньшей электроотрицательностью серьг по сравнению с кислородом, вследстпзие чего тиолы менее склонны образовывать водородные связи. Соответственно тиолы гораздо хуже спиртов растворяются в воде. [c.172]
Смотреть страницы где упоминается термин Водородная связь температуры кипения: [c.68] [c.277] [c.315] [c.57] [c.133] [c.21] [c.149] [c.40] [c.23] Курс теоретических основ органической химии (1959) — [ c.164 , c.169 ]

http://chem21.info/info/640898/

Добавить комментарий

1serdce.pro
Adblock detector