Физиология сердца человека

Содержание

Физиология сердца человека

Физиология сердца является понятием, в котором должен разбираться любой врач. Эти знания очень важны в клинической практике и позволяют понимать работу сердца в норме, чтобы при необходимости сопоставить показатели при возникновении патологии работы сердечной мышцы.

Каковы функции сердечной мышцы?

Для начала следует разобраться, каковы функции сердца, физиология данного органа будет тогда более понятна. Итак, главной функцией сердечной мышцы является нагнетание крови из вены в артерию в ритмичном темпе, при котором создается градиент давления, что влечет за собой ее бесперебойное движение. То есть функцией сердца является обеспечение кровообращения кровяным сообщением кинетической энергии. Многие люди ассоциируют миокард с насосом. Только, в отличие от данного механизма, сердце отличается высокой производительностью и скоростью, гладкостью переходных процессов и запасом прочности. В сердце постоянно обновляются ткани.

Кровообращение, его компоненты

Чтобы разобраться в физиологии кровообращения сердца, следует понимать, какие существуют компоненты кровообращения.
Кровеносная система состоит из четырех элементов: сердечной мышцы, кровеносных сосудов, механизма регуляции и органов, которые являются кровяными депо. Данная система – это составляющий компонент сердечно-сосудистой системы (в сердечно-сосудистую систему входит также и лимфатическая система).
Благодаря наличию последней системы кровь бесперебойно двигается по сосудам. Но здесь оказывают влияние такие факторы, как: работа сердечной мышцы в качестве «насоса», разница уровня давления в сердечно-сосудистой системе, клапаны сердца и вен, которые не позволяют крови оттекать обратно, а также замкнутость. Помимо этого, влияние оказывают эластичность стенок сосудов, отрицательное давление внутриплевральное, благодаря которому кровь «присасывается» и более легко возвращается к сердцу по венам, а также сила тяжести крови. Благодаря сокращению скелетных мышц кровь проталкивается, дыхание становится более частым и глубоким, и это приводит к тому, что плевральное давление снижается, повышается активность проприорецепторов, увеличивая возбудимость в центральной нервной системе и частоту сокращений сердечной мышцы.

Круги кровообращения

В организме человека существуют два круга кровообращения: большой и малый. Вместе с сердцем они образуют систему замкнутого типа. Разбираясь в физиологии сердца и сосудов, следует понимать, как циркулирует кровь по ним.
Еще в 1553 году М. Сервет описал малый круг кровообращения. Он берет начало из правого желудочка и переходит в легочный ствол и затем в легкие. Именно в легких осуществляется газообмен, далее кровь проходит по венам легкого и прибывает в левое предсердие. Благодаря этому происходит обогащение крови кислородом. Далее, насыщенная кислородом, она протекает в левый желудочек, в котором берет свое начало большой круг.
О большом круге кровообращения человечеству стало известно в 1685 году, и открыл его У. Гарвей. Согласно основам физиологии сердца и кровеносной системы, кровь, которая обогатилась кислородом, двигается по аорте, направляясь к небольшим сосудам, через которые переносится к органам и тканям. В них происходит газообмен.
Также в организме человека есть верхняя и нижняя полые вены, впадающие в правое предсердие. По ним двигается венозная кровь, которая содержит немного кислорода. Следует также обратить внимание, что по большому кругу артериальная кровь проходит через артерии, а венозная – через вены. В малом круге все наоборот.

Физиология сердца и его проводящая система

Теперь давайте разберемся в физиологии сердца поподробнее. Миокард представляет собой поперечно-полосатую мышечную ткань, которая состоит из особых отдельных клеток под названием кардиомиоциты. Эти клетки соединяются между собой нексусами и образуют собой мышечное волокно сердца. Миокард не является анатомически целостным органом, но работает как синцитий. Нексусы быстро проводят возбуждение с одной клетки на другие.
Согласно физиологии строения сердца, в нем выделяют два вида мышц по особенностям функционирования, и это атипическая мускулатура и действующий миокард, который состоит из мышечных волокон, характеризующихся достаточно развитой полосато-поперечной исчерченностью.

Основные физиологические свойства миокарда

Физиология сердца говорит о том, что данный орган обладает несколькими физиологическими свойствами. И это:

  • Возбудимость.
  • Проводимость и низкая лабильность.
  • Сократимость и рефрактерность.

Что касается возбудимости, то она является способностью поперечно-полосатых мышц реагировать на нервные импульсы. Она не такая большая, как у аналогичных мышц скелетного типа. Клеткам действующего миокарда присуща большая величина мембранного потенциала, что вызывает их реакцию только на значительное раздражение.
Физиология проводимой системы сердца такова, что из-за того, что проводящая скорость возбуждения небольшая, предсердия и желудочки начинают сокращаться попеременно.
Рефрактерности, наоборот, присущ длительный период, который имеет связь с периодом действия. Из-за того, что рефрактерный период длительный, сердечная мышца сокращается по одиночному типу, а также по закону «либо все, либо ничего».

Атипичным мышечным волокнам присущи слабовыраженные свойства сократимости, но при этом такие волокна обладают высоким уровнем обменных процессов. Здесь на помощь приходят митихондрии, функция которых близка функциям нервных волокон. Митихондрии проводят нервные импульсы и обеспечивают генерацию. Проводящая система сердца образуется именно благодаря атипическому миокарду.

Атипический миокард и его основные свойства

  • Уровень возбудимости атипического миокарда меньше, чем у мышц скелета, но при этом она больше, чем та, которая характерна для сократительного миокарда. Нервные импульсы генерируются именно здесь.
  • Проводимость атипического миокарда тоже ниже, чем у мышц скелета, но при этом, наоборот, выше, чем у миокарда сократительного.
  • В длительном рефрактерном периоде здесь возникают потенциал действия и ионы кальция.
  • Для атипического миокарда характерна маленькая лабильность и небольшая способность сокращаться.
  • Клетки самостоятельно генерируют нервный импульс (автоматия).

Проводящая система атипических мышц

Изучая физиологию работы сердца, следует упомянуть о том, что проводящая система атипических мышц состоит из узла синоатриального, расположенного справа на задней стенке, на границе, разделяющей верхнюю и нижнюю полые вены, узла атриовентрикулярного, посылающего импульсы желудочкам (расположен снизу межпредсердной перегородки), пучка Гиса (проходит сквозь предсердно-желудочную перегородку в желудочек). Еще один компонент атипической мышцы – это волокно Пуркинье, ветви которого отданы кардиомиоцитам.
Также здесь имеются и другие структуры: пучки Кента и Мейгайля (первые идут по латеральному краю сердечной мышцы и соединяют желудочки и предсердие, а второй находится снизу атриовентрикулярного узла и передает сигналы в желудочки, не затрагивая пучки Гиса). Именно благодаря этим структурам, в случае, если атриовентрикулярный узел будет выключен, обеспечивается передача импульсов, которые влекут за собой поступление лишней информации при заболевании и вызывают дополнительное сокращение сердечной мышцы.

Что такое сердечный цикл?

Физиология функций сердца такова, что сокращение сердечной мышцы можно назвать хорошо организованным периодическим процессом. Организовать этот процесс помогает проводящая система сердца.
Так как сердце ритмично сокращается, кровь периодически изгоняется в кровеносную систему. Сердечным циклом называется тот период, когда сердечная мышца сокращается и расслабляется. Данный цикл состоит из систол желудочков и предсердий, а также паузы. При систоле предсердий давление повышается от 1-2 миллиметров ртутного столба до 6-9 и до 8-9 миллиметров ртутного столба в правом и левом предсердиях соответственно. В итоге кровь поступает к желудочкам через предсердно-желудочковые отверстия. Когда давление в левом и правом желудочках достигает 65 и 5-12 миллиметров ртутного столба соответственно, происходит изгнание крови и возникает желудочковая диастола, влекущая быстрое падение давления в желудочках. При этом повышается давление в крупных сосудах, что приводит к захлопыванию полулунных клапанов. Когда давление в желудочках упадет до ноля, откроются клапаны створчатого типа, и наступит фаза, при которой желудочки наполняются. Данная фаза завершает диастолу.
Какова продолжительность фаз цикла сердечной мышцы? Этот вопрос интересует многих людей, интересующихся физиологией регуляции сердца. Можно сказать только одно: их длительность является непостоянной величиной. Здесь решающим фактором считается частота ритма сердечной мышцы. Если функции сердца расстроятся, то при одинаковом ритме продолжительность фазы может различаться.

Внешние признаки деятельности сердца

Для сердечной мышцы характерны внешние признаки ее работы. К ним относят:

  • Толчок верхушечный.
  • Электрические явления.
  • Тоны сердца.

Минутный и систолический объемы миокарда также являются показателями его работы.
В то время, когда происходит систола желудочков, сердце делает поворот слева направо, меняя первоначальную эллипсоидную форму на округлую. При этом верхняя часть сердечной мышцы приподнимается и давит на грудную клетку в V-образном межреберье с левой стороны. Так возникает верхушечный толчок.
Что касается физиологии тонов сердца, то о них следует упомянуть отдельно. Тоны являются звуковыми явлениями, которые возникают во время работы сердечной мышцы. Всего в работе сердца выделяют два тона. Первый тон – он же систолический – который характерен для предсердно-желудочковых клапанов. Второй тон – диастолический – возникает в момент закрытия клапанов легочного ствола и аорты. Первый тон длительный, глухой и ниже второго. Второй тон высокий и короткий.

Законы сердечной деятельности

Всего можно выделить два закона сердечной деятельности: закон сердечного волокна и закон ритма сердечной мышцы.
Первый (О. Франка — Э. Старлинга) гласит о том, что чем более растянуто волокно мышц, тем сильнее будет его дальнейшее сокращение. На уровень растяжения влияет объем крови, накопившейся в сердце в период диастолы. Чем больше объем, тем энергичнее будет сокращение во время систолы.
Второй (Ф. Бейнбриджа) гласит о том, что когда повышается кровяное давление в полых венах (в устьях), наблюдается увеличение частоты и силы сокращений мышцы на рефлекторном уровне.
Оба этих закона работают одновременно. Их относят к механизму саморегуляции, который помогает приспособить работу сердечной мышцы к различным условиям существования.
Рассматривая физиологию сердца кратко, нельзя не упомянуть о том, что на работу данного органа влияют также некоторые гормоны, медиаторы и минеральные соли (электролиты). Например, ацетилхопин (медиатор) и переизбыток калиевых ионов ослабляют сердечную деятельность, делая ритм редким, вследствие чего может возникнуть даже остановка сердца. А большое количество ионов кальция, адреналин и норадреналин, напротив, способствуют усилению сердечной деятельности и ее учащению. Адреналин, к тому же, расширяет венечные сосуды, благодаря чему питание миокарда улучшается.

Механизмы регуляции сердечной деятельности

В соответствии с потребностями организма в кислороде и питании частота и сила сокращений сердечной мышцы может различаться. Деятельность сердца регулируется особыми нейрогуморальными механизмами.
Но у сердца имеются и собственные механизмы регулирования деятельности. Некоторые из них напрямую связаны со свойствами, которыми обладают волокна миокарда. Здесь наблюдается зависимость между силой сокращения волокна и величиной ритма сердечной мышцы, а также зависимость энергии сокращения и степени растяжения волокна в период диастолы.
Упругое свойство волокон миокарда, которое проявляется не в процессе активного спряжения, называется пассивным. Носителями упругих свойств считаются опорно-трофический остов, а также актомиозиновые мосты, которые расположены и в не активной мышце. Остов очень позитивно влияет на упругость миокарда тогда, когда возникают склеротические процессы.
Если у человека наблюдается ишемическая контрактура или воспалительные болезни миокарда, то мостиковая жесткость повышается.

Работа сердечно-сосудистой системы является сложным процессом. Любой сбой может повлечь за собой негативные последствия. Регулярно обращайтесь к врачу и не пренебрегайте его рекомендациями. Ведь предотвратить заболевание гораздо легче, чем лечить его, тратя деньги на дорогостоящие медикаменты.

http://fb.ru/article/323560/fiziologiya-serdtsa-cheloveka

Свойства сердечной мышцы

Свойства сердечной мышцы
Сердечная мышца обладает следующими свойствами:
1. автоматией – способностью сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом;
2. возбудимостью – способностью сердца приходить в состояние возбуждения под действием раздражителя;
3. проводимостью – способностью сердечной мышцы проводить возбуждение;
4. сократимостью – способностью изменять свою форму и величину под действием раздражителя, а также растягивающей силы или крови.
Субстратом автоматии в сердце является специфическая мышечная ткань, или проводящая система сердца, которая состоит из синусно-предсердного (синоатриального) (СА) узла, расположенного в стенке правого предсердия у места впадения в него верхней полой вены, предсердно-желудочкового (атриовентрикулярного^ узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучок Гиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчивающиеся конечными разветвлениями – волокнами Пуркинье. Верхушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.
В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриального узла в покое составляет 70 в 1 минуту. Атриовентрикулярный узел – это водитель ритма второго порядка с частотой 40 -50 в 1 минуту. Он берет на себя роль водителя ритма, если по каким-либо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводящей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20 имп/с) могут возникать в волокнах Пуркинье – это водитель ритма 3-го порядка.
Следовательно, существует градиент автоматии сердца, согласно которому степень автоматии тем выше, чем ближе расположен данный участок проводящей системы к синусному узлу.

http://med.wikireading.ru/24916

Сердечная мышца человека, ее особенности и функции

Сердце представляет собой полый орган. Его размер примерно с кулак человека. Сердечная мышца формирует стенки органа. В нем присутствует перегородка, разделяющая его на левую и правую половины. В каждой из них сеть желудочек и предсердие. Направление движения крови в органе контролируется посредством клапанов. Далее рассмотрим подробнее свойства сердечной мышцы.

Общие сведения

Сердечная мышца – миокард – составляет основную часть массы органа. Она состоит из трех типов ткани. В частности, выделяют: атипический миокард проводящей системы, волокна предсердия и желудочков. Размеренное и координированное сокращение сердечной мышцы обеспечивается проводящей системой.
Сердечная мышца отличается сетчатой структурой. Она формируется из волокон, переплетенных в сеть. Связи между волокнами устанавливаются за счет присутствия боковых перемычек. Таким образом, сеть представлена в виде узкопетлистого синцития. Между волокнами сердечной мышцы присутствует соединительная ткань. Она отличается рыхлой структурой. Кроме этого, волокна обвиты густой сетью капилляров.

Свойства сердечной мышцы

В структуре присутствуют вставочные диски, представленные в виде мембран, отделяющих клетки волокон друг от друга. Здесь следует отметить важные особенности сердечной мышцы. Отдельные кардиомиоциты, присутствующие в структуре в большом количестве, соединены друг с другом параллельно и последовательно. Клеточные мембраны сливаются так, что формируют щелевые контакты высокой проницаемости. Через них беспрепятственно диффундируют ионы. Таким образом, одна из особенностей миокарда состоит в наличии свободного перемещения ионов по внутриклеточной жидкости по ходу всего миокардиального волокна. Это обеспечивает беспрепятственное распределение потенциалов действия от одной клетки к другой сквозь вставочные диски. Из этого следует, что сердечная мышца – это функциональное объединение огромного количества клеток, имеющих тесную взаимосвязь друг с другом. Она настолько сильна, что при возбуждении только одной клетки провоцирует распространение потенциала на все остальные элементы.

Миокардиальные синцития

В сердце их два: предсердный и желудочковый. Все отделы сердца отделены друг от друга фиброзными перегородками с отверстиями, снабженными клапанами. Непосредственно через ткань стенок возбуждение от предсердия к желудочку перейти не может. Передача осуществляется посредством специального атриовентрикулярного пучка. Его диаметр – несколько миллиметров. Состоит пучок из волокон проводящей структуры органа. Присутствие в сердце двух синцитий способствует тому, что предсердия сокращаются раньше желудочков. Это, в свою очередь, имеет важнейшее значение для обеспечения эффективной насосной деятельности органа.

Болезни миокарда

Работа сердечной мышцы может нарушаться вследствие различных патологий. В зависимости от провоцирующего фактора, выделяют специфические и идиопатические кардиомиопатии. Болезни сердца могут быть также врожденными и приобретенными. Существует еще одна классификация, в соответствии с которой различают рестриктивную, дилатационную, конгестивную и гипертрофическую кардиомиопатии. Рассмотрим их вкратце.

Гипертрофическая кардиомиопатия

На сегодняшний день специалистами выявлены мутации генов, провоцирующие данную форму патологии. Для гипертрофической кардиомиопатии характерно утолщение миокарда и изменение его структуры. На фоне патологии мышечные волокна увеличиваются в размерах, \»скручиваются\», приобретая странные формы. Первые симптомы заболевания отмечаются в детском возрасте. Основными признаками гипертрофической кардиомиопатии считаются болезненность в груди и одышка. Также наблюдается неравномерность сердечного ритма, на ЭКГ обнаруживаются изменения в сердечной мышце.

Конгестивная форма

Это достаточно распространенный тип кардиомиопатии. Как правило, заболевание возникает у мужчин. Распознать патологию можно по признакам сердечной недостаточности и нарушениям в сердечном ритме. У некоторых пациентов отмечается кровохарканье. Патологию также сопровождает боль в районе сердца.

Дилатационная кардиомиопатия

Эта форма заболевания проявляется в виде резкого расширения во всех камерах сердца и сопровождается снижением сократительной способности левого желудочка. Как правило, дилатационная кардиомиопатия возникает в сочетании с гипертонической болезнью, ИБС, стенозом в аортальном отверстии.

Рестриктивная форма

Кардиомиопатия этого типа диагностируется крайне редко. Причиной патологии является воспалительный процесс в сердечной мышце и осложнения после вмешательства на клапанах. На фоне заболевания происходит перерождение миокарда и его оболочек в соединительную ткань, отмечается замедленное наполнение желудочков. У пациента отмечается одышка, быстрая утомляемость, пороки клапанов и сердечная недостаточность. Крайне опасной рестриктивная форма считается для детей.

Как укрепить сердечную мышцу?

Существуют различные способы это сделать. Мероприятия включают в себя коррекцию режима дня и питания, упражнения. В качестве профилактики после консультации с врачом можно начать принимать ряд препаратов. Кроме этого, есть и народные методы укрепления миокарда.

Физическая активность

Она должна быть умеренной. Физическая активность должна стать неотъемлемым элементом жизни любого человека. При этом нагрузка должна быть адекватной. Не стоит перегружать сердце и истощать организм. Оптимальным вариантом считаются спортивная ходьба, плавание, езда на велосипеде. Упражнения рекомендуется проводить на свежем воздухе.

Она превосходно подходит не только для укрепления сердца, но и для оздоровления всего организма. При ходьбе задействована практически вся мускулатура человека. При этом сердце дополнительно получает умеренную нагрузку. По возможности, особенно в молодом возрасте, стоит отказаться от лифта и преодолевать высоту пешком.

Образ жизни

Укрепление сердечной мышцы невозможно без корректировки режима дня. Для улучшения деятельности миокарда необходимо отказаться от курения, дестабилизирующего давление и провоцирующего сужение просвета в сосудах. Кардиологи также не рекомендуют увлекаться баней и сауной, поскольку пребывание в парной существенно увеличивает сердечные нагрузки. Необходимо также позаботиться и о нормальном сне. Спать следует ложиться вовремя и отдыхать достаточное количество часов.
Одним из важнейших мероприятий в вопросе укрепления миокарда считается рациональное питание. Следует ограничить количество соленой и жирной пищи. В продуктах должны присутствовать:

  • Магний (бобовые, арбузы, орехи, гречка).
  • Калий (какао, изюм, виноград, абрикосы, кабачки).
  • Витамины Р и С (клубника, черная смородина, перец (сладкий), яблоки, апельсины).
  • Йод (капуста, творог, свекла, морепродукты).

Негативное воздействие на деятельность миокарда оказывает холестерин в высоких концентрациях.

Психоэмоциональное состояние

Укрепление сердечной мышцы может осложняться различными неразрешенными проблемами личного либо рабочего характера. Они могут спровоцировать перепады давления и нарушения ритма. Следует по возможности избегать стрессовых ситуаций.
Существует несколько средств, способствующих укреплению миокарда. К ним, в частности, относят такие препараты, как:

  • \»Рибоксин\». Его действие направлено на стабилизацию ритма, усиление питания мышцы и коронарных сосудов.
  • \»Аспаркам\». Этот препарат представляет собой магниево-калиевый комплекс. Благодаря приему средства нормализуется электролитный обмен, устраняются признаки аритмии.
  • Родиола розовая. Это средство улучшает сократительную функцию миокарда. При приеме данного препарата следует соблюдать осторожность, поскольку он обладает способностью к возбуждению нервной системы.

http://www.syl.ru/article/169142/new_serdechnaya-myishtsa-cheloveka-ee-osobennosti-i-funktsii

Сердечная мышца человека

  • Физиология
  • История физиологии
  • Методы физиологии

Физиологические свойства сердечной мышцы

Кровь может выполнять свои многочисленные функции, только находясь в постоянном движении. Обеспечение движения крови является главной функцией сердца и сосудов, формирующих кровеносную систему. Сердечно-сосудистая система совместно с кровью участвует также в транспорте веществ, терморегуляции, реализации иммунных реакций и гуморальной регуляции функций организма. Движущая сила кровотока создастся за счет работы сердца, которое выполняет функцию насоса.
Способность сердца сокращаться в течение всей жизни без остановки обусловлена рядом специфических физических и физиологических свойств сердечной мышцы. Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен интенсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Физические свойства

Растяжимость — способность увеличивать длину без нарушения структуры под влиянием растягивающей силы. Такой силой является кровь, наполняющая полости сердца во время диастолы. От степени растяжения мышечных волокон сердца в диастолу зависит сила их сокращения в систолу.
Эластичность — способность восстанавливать исходное положение после прекращения действия деформирующей силы. Эластичность сердечной мышцы является полной, т.е. она полностью восстанавливает исходные показатели.
Способность развивать силу в процессе сокращения мышцы.

Физиологические свойства

Сокращения сердца происходят вследствие периодически возникающих процессов возбуждения в сердечной мышце, которая обладает рядом физиологических свойств: автоматизмом, возбудимостью, проводимостью, сократимостью.
Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизм.
В сердце различают сократительную мускулатуру, представленную поперечно-полосатой мышцей, и атипическую, или специальную ткань, в которой возникает и проводится возбуждение. Атипическая мышечная ткань содержит малое количество миофибрилл, много саркоплазмы и не способна к сокращению. Она представлена скоплениями в определенных участках миокарда, которые образуют проводящую систему сердца, состоящую из синоатриального узла, располагающегося на задней стенке правого предсердия у места впадения полых вен; атриовентрикулярного, или предсердно-желудочкового узла, находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками; предсердно-желудочкового пучка (пучка Гиса), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, разветвляется на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.
Синоатриальныи узел является водителем ритма первого порядка. В нем возникают импульсы, которые определяют частоту сокращений сердца. Он генерирует импульсы со средней частотой 70-80 импульсов в 1 мин.
Атриовентрикулярный узел — водитель ритма второго порядка.
Пучок Гиса — водитель ритма третьего порядка.
Волокна Пуркинье — водители ритма четвертого порядка. Частота возбуждения, возникающая в клетках волокон Пуркинье, очень низкая.
В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.
Однако и они обладают автоматизмом, только в меньшей степени, и этот автоматизм проявляется лишь при патологии.
В области синоатриального узла обнаружено значительное число нервных клеток, нервных волокон и их окончаний, которые образуют здесь нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.
Возбудимость сердечной мышцы — способность клеток миокарда при действии раздражителя приходить в состояние возбуждения, при котором изменяются их свойства и возникает потенциал действия, а затем сокращение. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в ней необходим более сильный раздражитель, чем для скелетной. При этом величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и др.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.
Уровень возбудимости сердечной мышцы в разные периоды сокращения миокарда меняется. Так, дополнительное раздражение сердечной мышцы в фазу ее сокращения (систолу) не вызывает нового сокращения даже при действии сверхпорогового раздражителя. В этот период сердечная мышца находится в фазе абсолютной рефрактерности. В конце систолы и начале диастолы возбудимость восстанавливается до исходного уровня — это фаза относительной рефрактерное/пи. За этой фазой следует фаза экзальтации, после которой возбудимость сердечной мышцы окончательно возвращается к исходному уровню. Таким образом, особенностью возбудимости сердечной мышцы является длительный период рефрактерности.
Проводимость сердца — способность сердечной мышцы проводить возбуждение, возникшее в каком-либо участке сердечной мышцы, к другим ее участкам. Возникнув в синоатриальном узле, возбуждение распространяется по проводящей системе на сократительный миокард. Распространение этого возбуждения обусловлено низким электрическим сопротивлением нексусов. Кроме того, проводимости способствуют специальные волокна.
Волны возбуждения проводятся по волокнам сердечной мышцы и атипической ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1 м/с, по волокнам мышц желудочков — 0,8-0,9 м/с, по атипической ткани сердца — 2-4 м/с. При прохождении возбуждения через атриовентрикулярный узел возбуждение задерживается на 0,02- 0,04 с — это атриовентрикулярная задержка, обеспечивающая координацию сокращения предсердий и желудочков.
Сократимость сердца — способность мышечных волокон укорачиваться или изменять свое напряжение. Она реагирует на раздражители нарастающей силы по закону «все или ничего». Сердечная мышца сокращается по типу одиночного сокращения, так как длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения ([[|систола]]), фазу расслабления (диастола). Благодаря способности сердечной мышцы сокращаться только по типу одиночного сокращения сердце выполняет функцию насоса.
Первыми сокращаются мышцы предсердий, затем слой мышц желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

http://www.grandars.ru/college/medicina/serdechnaya-myshca.html

Функции сердца

Перед описанием функций главного органа сердечной и сосудистой системе человека — сердца, необходимо кратко остановиться на его строении, ведь сердце является не только «органом любви», но и выполняет важнейшие функции поддержания жизнедеятельности организма в целом.

1 Сердце — анатомические данные

Итак, сердце (греч. kardia, отсюда название науки о сердце — кардиология) — представляет собой полый мышечный орган, который принимает кровь из впадающих венозных сосудов и нагнетает уже обогащенную кровь в артериальную систему. Сердце человека состоит из 4-ех камер: левое предсердие, левый желудочек, правое предсердие и правый желудочек. Между собой левое и правое сердце разделены межпредсердной и межжелудочковой перегородками. В правых отделах течет венозная (не насыщенная кислородом кровь), в левых — артериальная (насыщенная кислородом кровь).

2 Общие функции сердца

В данном разделе мы опишем общие функции сердечной мышцы, как органа в целом.

3 Автоматизм

Автоматизм работы сердца
В состав клеток сердца (кардиомиоцитов) входят и так называемые атипичные кардиомиоциты, которые подобно электрическому скату спонтанно вырабатывают электрические импульсы возбуждения, а они в свою очередь способствуют сокращению сердечной мышцы. Нарушение данного свойс свойства приводит, чаще всего, к остановке кровообращения и без оказания своевременной помощи является летальной.

4 Проводимость

В сердце человека есть определенные проводящие пути, которые обеспечивают проведение электрического заряда по сердечной мышце не хаотично, а направленно, в определенной последовательности, от предсердий к желудочкам. При нарушении в проводящей системе сердца выявляются различного рода аритмии, блокады и прочие нарушения ритма, которые требуют медицинского терапевтического, а иногда и хирургического вмешательства.

5 Сократимость

Основная масса клеток системы сердца состоит из типичных (рабочих) клеток, которые обеспечивают сокращение сердца. Механизм сравним с работой других мышц (бицепс, трицепс, мышца радужки глаза), так в мышцу поступает сигнал из атипичных кардиомиоцитов, после чего они сокращаются. При нарушении сократимости сердечной мышцы чаще всего наблюдаются различного рода отеки (легких, нижних конечностей, рук, всей поверхности тела), которые образуются из-за сердечной недостаточности.

6 Тоничность

Это способность, благодаря особому гистологическому (клеточному) строению, сохранять свою форму во все фазы сердечного цикла. (Сокращение сердца — систола, расслабление — диастола). Все вышеописанные свойства делают возможной сложнейшую, и, пожалуй, самую важную функцию — насосную. Насосная функция обеспечивает правильное, своевременное и полноценное продвижение крови по сосудам организма, без данного свойства, жизнедеятельность организма (без помощи медицинской техники) невозможна.

7 Эндокринная функция

Предсердный натрийуретический гормон
Эндокринная функция сердечной и сосудистой системы обеспечивается секреторными кардиомиоцитами, которые встречаются преимущественно в ушках сердца и правом предсердии. Секреторные клетки вырабатывают предсердный натрийуретический гормон (ПНГ). Выработка данного гормона происходит при перегрузке и перерастяжении мышцы правого предсердия. Для чего же это делается? Ответ лежит в свойствах данного гормона. ПНГ главным образом действует на почки, стимулируя диурез, также под действием ПНГ происходит расширение сосудов и снижение артериального давления, что в купе с повышением диуреза вызывает уменьшение лишней жидкости в организме и снижает нагрузку на правое предсердие, как следствие выработка ПНГ уменьшается.

8 Функция правого предсердия (ПП)

Кроме вышеописанной секреторной функции ПП, существует и биомеханическая функция. Так в толще стенки ПП лежит синусовый узел, генерирующий электрический заряд и способствующий сокращению сердечной мышцы от 60 и выше ударов в минуту. Также стоит выделить, что ПП, являясь одной из камер сердца, несет функцию передвижения крови из верхней и нижней полых вен в ПЖ, а в отверстии между предсердием и желудочком находится трехстворчатый клапан.

9 Функция правого желудочка (ПЖ)

Механическая функция правого желудочка
ПЖ преимущественно выполняет механическую функцию. Так при его сокращении кровь попадает через легочной клапан в легочной ствол, а далее непосредственно в легкие, где происходит насыщение крови кислородом. При снижении данного свойства ПЖ происходит застой венозной крови сначала в ПП, а потом и во всех венах организма, что приводит к отекам нижних конечностей, образованию тромбов, как в ПП, так и преимущественно в венах нижних конечностей, что при отсутствии лечения может привести к жизнеугрожающиму, а в 40% случаев даже летальному состоянию — тромбоэмболия легочной артерии (ТЭЛА).

10 Функция левого предсердия (ЛП)

ЛП выполняет функцию продвижения уже обогащенной кислородом крови в ЛЖ. Именно с ЛП начинается большой круг кровообращения, который обеспечивает все органы и ткани организма кислородом. Главное свойство данного отдела состоит в разгрузке давления ЛЖ. При развитии недостаточности ЛП, кровь уже обогащенная кислородом забрасывается обратно в легкие, что ведет к отеку легких и при отсутствии лечения, исход чаще всего летальный.

11 Функция левого желудочка

Стенка ЛЖ 10-12 мм
Между ЛП и ЛЖ находится митральный клапан, именно через него кровь попадает в ЛЖ, а далее, через аортальный клапан в аорту и всему организму. В ЛЖ самое большое давление из всех полостей сердца, именно поэтому стенка ЛЖ наиболее толстая, так в норме она достигает 10-12 мм. Если левый желудочек перестает выполнять свои свойства на 100%, происходит повышенная нагрузка на левое предсердие, что также, впоследствии, может привести к отеку легких.

12 Функция межжелудочковой перегородки

Главной функцией межжелудочковой перегородки служит препятствие смешивания потоков из левого и правого желудочков. При патологии МЖП возникает смешивание венозной крови с артериальной, что, впоследствии, приводит к, заболеваниям легких, недостаточности правых и левых отделов сердца, такие состояния без хирургического вмешательства чаще всего заканчиваются летально. Также в толще межжелудочковой перегородки проходит путь, проводящий электрический заряд от предсердий к желудочкам, что вызывает синхронную работу всех отделов сердечной и сосудистой системы.

Насосная деятельность желудочков
Все вышеперечисленные свойства являются очень важными для нормальной работы сердца и жизнедеятельности организма человека в целом, так как нарушение хотя бы одной из них влечет за собой различной степени угрозы жизни человека.

  • Насосная функция — важнейшее свойство сердечной мышцы, обеспечивающая продвижение крови по организму человека, ее обогащение кислородом. Насосная функция осуществляется за счет некоторых свойств сердца, а именно:
    • автоматизм — способность спонтанной выработки электрического заряда
    • проводимость — способность проводить электрический импульс по всем отделам сердца, в определенной последовательности, от предсердий к желудочкам
    • сократимость — способность всех отделов сердечной мышцы сокращаться в ответ на проведенный импульс
    • тоничность — способность сердца сохранять свою форму во все фазы сердечного цикла.

    Все эти свойства обеспечивают стабильную и беспрерывную сердечную деятельность, и при отсутствии хотя бы одного из вышеперечисленных свойств жизнедеятельность (без внешней медицинской аппаратуры) невозможна.

  • Нейроэндокринная функция — выработка натрийуретического гормона происходит именно в сердечной мышце, он (гормон) обеспечивает увеличение диуреза, снижение АД и расширение сосудов, а благодаря этому снижается нагрузка на сердце.
  • Каждый из отделов сердечной и сосудистой системы несет свою очень важную функцию. Правые отделы сердца перекачивают кровь в легкие, где и происходит насыщение венозной крови кислородом, а левые отделы способствуют продвижению артериальной крови из сердца по всему организму. Поэтому важно понимать, что синхронная работа каждого отдела способствует нормальной жизнедеятельности организма и нарушение строения или работы хотя бы одного из них со временем повлечет за собой патологические процессы и в остальных отделах.
  • http://zabserdce.ru/serdce/funkcii-serdca.html

    Основные функции сердечной мышцы

    Форма сердца не одинакова у разных людей. Она определяется возрастом, полом, телосложением, здоровьем, другими факторами. В упрощенных моделях описывается сферой, эллипсоидами, фигурами пересечения эллиптического параболоида и трёхосного эллипсоида. Мера вытянутости (фактор) формы есть отношение наибольших продольного и поперечного линейных размеров сердца. При гиперстеническом типе телосложения отношение близко к единице и астеническом — порядка 1,5. Длина сердца взрослого человека колеблется от 10 до 15 см (чаще 12—13 см), ширина в основании 8—11 см (чаще 9—10 см) и переднезадний размер 6—8,5 см (чаще 6, 5—7 см). Масса сердца в среднем составляет у мужчин 332 г (от 274 до 385 г), у женщин — 253 г (от 203 до 302 г). [B: 2]
    Сердце человека — романтический орган. У нас оно считается вместилищем души. «Сердцем чувствую» — говорят в народе. У африканских аборигенов оно считается органом ума.
    Здоровое сердце представляет собой сильный, непрерывно работающий орган, размером с кулак и весом около полкилограмма.
    Cостоит из 4-х камер. Мышечная стенка, называемая перегородкой, делит сердце на левую и правую половины. В каждой половине находится 2 камеры.
    Верхние камеры называются предсердиями, нижние — желудочками. Два предсердия разделены межпредсердной перегородкой, а два желудочка — межжелудочковой перегородкой. Предсердие и желудочек каждой стороны сердца соединяются предсердно-желудочковым отверстием. Это отверстие открывает и закрывает предсердно-желудочковый клапан. Левый предсердно-желудочковый клапан известен также как митральный клапан, а правый предсердно-желудочковый клапан — как трехстворчатый клапан. Правое предсердие получает всю кровь, возвращающуюся из верхней и нижней частей организма. Затем через трикуспидальный клапан, оно посылает ее к правому желудочку, которое в свою очередь нагнетает кровь через клапан легочного ствола — к легким.
    В легких кровь обогащается кислородом и возвращается в левое предсердие, которое через митральный клапан посылает ее в левый желудочек.
    Левый желудочек через аортальный клапан по артериям нагнетает кровь по всему организму, где она снабжает ткани кислородом. Обедненная кислородом кровь по венам возвращается в правое предсердие.
    Кровоснабжение сердца осуществляется двумя артериями: правой венечной артерией и левой венечной артерией, которые являются первыми ветвями аорты. Каждая из венечных артерий выходит из соответствующей правой и левой пазух аорты. Для предотвращения кровотока в обратном направлении служат клапаны.
    Виды клапанов: двухстворчатый, трехстворчатый и полулунный.
    Полулунные клапаны имеют клиновидные створки, которые препятствуют возвращению крови на выходе из сердца. В сердце есть два полулунных клапана. Один из этих клапанов предотвращает обратный ток в легочной артерии, другой клапан находится в аорте и служит для аналогичной цели.
    Другие клапаны предотвращают ток крови из нижних камер сердца в верхние. Двухстворчатый клапан находится в левой половине сердца, трехстворчатый – в правой. У этих клапанов схожее строение, но один из них имеет две створки, а другой, соответственно, три.
    Для перекачки крови через сердце в его камерах происходят чередующиеся расслабления (диастолы) и сокращения (систолы), во время которых камеры наполняются кровью и выталкивают ее соответственно.
    Естественный водитель ритма, называемый синусовым узлом или узлом Кис-Фляка, располагается в верхней части правого предсердия. Это анатомическое образование, которое контролирует и регулирует сердечный ритм в соответствие с активностью организма, временем суток и многими другими факторами, влияющими на человека. В естественном водителе ритма сердца возникают электрические импульсы, которые проходят через предсердия, заставляя их сокращаться, к атриовентрикулярному (то есть предсердно-желудочковому) узлу, расположенному на границе предсердий и желудочков. Затем возбуждение по проводящим тканям распространяется в желудочках, вызывая их сокращение. После этого сердце отдыхает до следующего импульса, с которого начинается новый цикл.
    Основной функцией сердца является обеспечение кровообращения сообщением крови кинетической энергии. Для обеспечения нормального существования организма в различных условиях сердце может работать в достаточно широком диапазоне частот. Такое возможно благодаря некоторым свойствам, таким как:
    Автоматия сердца — это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом. Описана выше.
    Возбудимость сердца — это способность сердечной мышцы возбуждаться от различных раздражителей физической или химической природы, сопровождающееся изменениями физико – химических свойств ткани.
    Проводимость сердца — осуществляется в сердце электрическим путем вследствие образования потенциала действия в клетках пейс-мейкерах. Местом перехода возбуждения с одной клетки на другую, служат нексусы.
    Сократимость сердца – Сила сокращения сердечной мышцы прямо пропорциональна начальной длине мышечных волокон
    Рефрактерность миокарда – такое временое состояние не возбудимости тканей
    При сбое сердечного ритма происходит мерцание, фибриляция – быстрые асинхронные сокращения сердца, что может привести к летальному исходу.
    Нагнетание крови обеспечивается посредством попеременного сокращения (систола) и расслабления (диастола) миокарда. Волокна сердечной мышцы сокращаются вследствие электрических импульсов (процессов возбуждения), образующихся в мембране (оболочке) клеток. Эти импульсы появляются ритмически в самом сердце. Свойство сердечной мышцы самостоятельно генерировать периодические импульсы возбуждения называется автоматией.
    Мышечное сокращение в сердце — хорошо организованный периодический процесс. Функция периодической (хронотропной) организации этого процесса обеспечивается проводящей системой.
    В результате ритмического сокращения сердечной мышцы обеспечивается периодическое изгнание крови в сосудистую систему. Период сокращения и расслабления сердца составляет сердечный цикл. Он складывается из систолы предсердий, систолы желудочков и общей паузы. Во время систолы предсердий давление в них повышается от 1—2 мм рт. ст. до 6—9 мм рт. ст. в правом и до 8—9 мм рт. ст. в левом. В результате кровь через предсердно-желудочковые отверстия подкачивается в желудочки. У человека кровь изгоняется, когда давление в левом желудочке достигает 65—75 мм рт. ст., а в правом — 5—12 мм рт. ст. После этого начинается диастола желудочков, давление в них быстро падает, вследствие чего давление в крупных сосудах становится выше и полулунные клапаны захлопываются. Как только давление в желудочках снизится до 0, открываются створчатые клапаны и начинается фаза наполнения желудочков. Диастола желудочков заканчивается фазой наполнения, обусловленной систолой предсердий.
    Длительность фаз сердечного цикла — величина непостоянная и зависит от частоты ритма сердца. При неизменном ритме длительность фаз может нарушаться при расстройствах функций сердца.
    Сила и частота сердечных сокращений могут меняться в соответствии с потребностями организма, его органов и тканей в кислороде и питательных веществах. Регуляция деятельности сердца осуществляется нейрогуморальными регуляторными механизмами.
    Сердце обладает и собственными механизмами регуляции. Одни из них связаны со свойствами самих волокон миокарда — зависимостью между величиной ритма сердца и силой сокращения его волокна, а также зависимостью энергии сокращений волокна от степени растяжения его во время диастолы.
    Упругие свойства материала миокарда, проявляемые вне процесса активного сопряжения, называют пассивными. Наиболее вероятные носители упругих свойств — опорно-трофический остов (в особенности — коллагеновые волокна) и актомиозиновые мостики, имеющиеся в определенном количестве и в пассивной мышце. Вклад опорно-трофического остова в упругие свойства миокарда возрастает при склеротических процессах. Мостиковый компонент жесткости увеличивается при ишемической контрактуре и воспалительных заболеваниях миокарда.
    БИЛЕТ 34 (БОЛЬШОЙ И МАЛЫЙ КРУГ КРОВООБРАЩЕНИЯ)

    http://studfiles.net/preview/2365408/page:14/

    Добавить комментарий

    1serdce.pro
    Adblock detector