Механизмы кратковременной регуляции АД — Регуляция работы сердца и сосудов

Механизмы кратковременной регуляции АД

В регуляции работы ССС наиболее важны две группы рефлексов, которые поддерживают относительно постоянный уровень АД. Рецепторы, воспринимающие изменение Ад, называются барорецепторами (прессорецепторами). Важнейшими барорецепторами являются область дуги аорты и картидного синуса, расположенного в области разветвления общей сонной артерии. Афферентные волокна от барорецепторов каротидного синуса идут в составе ветви языкоглоточного нерва и от аорты в составе блуждающего нерва. По этим же волокнам черепно-мозговых нервов проходят афферентные волокна от хеморецепторов. Барорецепторы передают информацию не только о среднем Ад, но также об амплитуде колебаний и крутизне его нарастания, а следовательно, и о ритме сердечных сокращений. Участки, где расположены рецепторы, воспринимающие изменения АД, называются сосудистыми рефлексогенными зонами.
Рефлексогенные зоны первой группы рефлексов находятся в предсердиях, дуге аорты, сонных артериях. Повышение давления в них ведет к возбуждению барорецепторов. Импульсы от них по центростремительным нейронам достигают сосудодвигательного центра, от которого по центробежным нейронам нервные импульсы поступают к сосудам и сердцу. В результате урежения деятельности сердца и расширения сосудов наступает рефлекторное снижение артериального давления. Такая реакция имеет приспособительное значение, так как предотвращает повышение давления в сосудистой системе. С тех же рецептивных полей при понижении артериального давления возникает противоположный рефлекс, результатом которого является повышение артериального давления.
Рефлексогенные зоны второй группы рефлексов находятся в месте впадения полых вен в правое предсердие и в нем самом. Повышение давления вызывает усиление работы сердца, сужение сосудов и повышение артериального давления. Если бы сила сокращения сердца не увеличивалась, в легких мог бы возникнуть застой крови, что привело бы к резкому ухудшению газообмена.
Поддержание среднего уровня артериального давления очень важно для организма, так как при значительном понижении его нарушаются процессы нормального кровоснабжения мозга, сердца, почек и других органов, а при резком его повышении может наступить кровоизлияние в результате разрыва стенок сосудов.
Перечисленные механизмы регуляции артериального давления относятся к механизмам кратковременного действия, т.е. при быстрых колебаниях артериального давления.
Механизмы длительной регуляции артериального давления
Однако существуют механизмы и более длительного действия, чье влияние продолжается часы и многие дни. Конечно всегда их четко разграничить не удается, т.к. механизмы кратковременной регуляции плавно переходят в процессы длительной регуляции артериального давления. В процессах длительной регуляции принимают участие системы вазопрессина (антидиуретического гормона), альдостерона и почечного контроля за объемом крови. Эти системы тесно связаны между собой.
Рецепторы предсердий принимают участие в регуляции объема крови. Увеличение объема крови в них вызывает увеличение импульсации, и импульсы поступают в центры осморегуляции, которые находятся в гипоталамусе. В результате секретируется антидиуретический гормон. В случае увеличения объема крови количество выделяемого гормона уменьшается, и в связи с этим уменьшается обратное всасывание — реабсорбция в почках и количество выделяемой жидкости из организма увеличивается. А это снижает артериальное давление. Если же объем крови уменьшается, то процесс реабсорбции в почках уменьшается за счет увеличения выделения антидиуретического гормона. Поэтому уменьшается выделение жидкости почками.
При падении артериального давления увеличивается выделение ренина почками, который соединяется с ангиотензином (см. почки). В результате артериальное давление повышается. Действие ренин-ангиотензина продолжается в течении длительного времени.
Ангиотензин является главным стимулятором выработки альдостерона корой надпочечников. Под действием альдостерона увеличивается реабсорбция Ка+, а вследствие этого и воды. Это ведет к задержке воды в организме и значительному повышению артериального давления. Эффект действия альдостерона начинает проявляться спустя несколько часов и достигает максимума через несколько дней.
Следовательно, при кратковременных колебаниях давления и объема крови включаются сосудистые реакции, при длительных же сдвигах преобладают компенсаторные изменения объема крови. В последнем случае изменяется содержание в крови воды и электролитов.
Помимо нервной регуляции большое значение имеет изменение концентрации С02 и 02. При изменении химического состава крови происходит возбуждение хеморецепторов, находящихся в зоне разветвления сонной артерии. Это ведет к изменению артериального давления.
Центральная регуляция артериального давления
В регуляции деятельности сердечно-сосудистой системы принимают участие различные отделы центральной нервной системы.
На кровообращение влияют в наибольшей степени двигательные зоны коры как моторные, так и премоторные. Существенно влияние нижних поверхностей лобных и теменных долей. Оно может привести как к повышению, так и понижению артериального давления. Это было показано на следующих опытах. При раздражении двигательных зон коры, которые вызывают сокращения отдельных мышечных групп скелетной мускулатуры, происходит одновременное локальное увеличение кровотока в этих мышцах. Следовательно, кора головного мозга согласует сокращения мышц и их кровоснабжение. Влияния коры могут преобладать над противоположными реакциями сердца и артериального давления, обусловленными гомеостатическими безусловными рефлексами поддержа- ния артериального давления. От коры головного мозга импульсы поступают в гипоталамус, средний мозг. И далее от этих областей к стволовым центрам.
В регуляции гемодинамики принимает участие гипоталамус в связи с тем, что он является высшим центром вегетативной нервной системы. Его влияние осуществляется по эфферентным вегетативным волокнам. В промежуточном мозге происходит согласование двигательных и гемодинамических реакций при различных эмоциональных реакциях. Гипоталамус может оказывать на сердечно-сосудистую систему как тормозящее, так и возбуждающее влияние. Даже в условиях покоя гипоталамус оказывает постоянное влияние как на тоническую, так и на рефлекторную деятельность стволовых центров. В связи с тем, что гипоталамус является центром терморегуляции и поэтому регулирует теплообмен путем расширения и сужения сосудов кожи, он также принимает участие в регуляции деятельности сердечно-сосудистой системы при изменениях температуры тела.
В области ствола мозга, в ретикулярной формации продолговатого мозга и в мосте находятся сосудодвигательные стволовые центры. Они могут вызывать как прессорные реакции, ведущие к повышению артериального давления, так и депрессорные, ведущие к падению уровня артериального давления. На сосудодвигательные центры оказывают также влияние дыхательные центры и высшие отделы ЦНС. Регуляторные влияния этих стволовых центров осуществляются, главным образом, путем изменения тонуса симпатических нервов, тонус которых также зависит от афферентных импульсов от сердца и сосудов.

http://vuzlit.ru/899793/mehanizmy_kratkovremennoy_regulyatsii

Механизмы регуляции тонуса сосудов

Миогенная регуляция. Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами.
В основе миогенного механизма лежит способность гладких мышц сосудистой стенки возбуждаться при растяжении. Именно автоматия гладких мышц создает базальный тонус многих сосудов, поддерживают начальный уровень давления в сосудистой системе.
В сосудах кожи, мышц, внутренних органов миогенная регуляция тонуса играет относительно небольшую роль.
Но в почечных, мозговых и коронарных ссудах она является ведущей и поддерживает нормальный кровоток в широком диапазоне артериального давления. Гуморальная регуляция осуществляется физиологически активными веществами, находящимися в крови или тканевой жидкости. Их можно разделить на следующие группы:

  • 1. Метаболические факторы. Они включают несколько групп веществ:
    • а) неорганические ионы. Ионы калия вызывают расширение сосудов, ионы кальция суживают их;
    • б) неспецифические продукты метаболизма. Молочная кислота и другие кислоты цикла Кребса расширяют сосуды. Таким же образом действует повышение содержания СO2 и протонов, т. е., сдвиг реакции среды в кислую сторону;
    • в) осмотическое давление тканевой жидкости. При его повышении происходит расширение сосудов.

  • 2. Гормоны. По механизму действия на сосуды делятся на 2 группы:
    • а) Гормоны, непосредственно действующие на сосуды. Адреналин и норадреналин суживают большинство сосудов, взаимодействуя с альфа-адренорецепторами гладких мышц. В то же время, адреналин вызывает расширение сосудов мозга, почек, скелетных мышц, воздействуя на бета-адренорецепторы. Вазопрессин преимущественно суживает вены, а ангиотензин II — артерии и артериолы. Ангиотензин II образуется из белка плазмы ангиотензиногена в результате действия фермента ренина. Ренин начинает синтезироваться в юкстагломерулярном аппарате почек при снижении почечного кровотока. Поэтому при некоторых заболеваниях почек развивается почечная гипертензия. Брадикинин, гистамин, простагландины Ерасширяют сосуды, а серотонин суживает их;
    • б) Гормоны опосредованного действия. АКТГ и кортикостероиды надпочечников постепенно увеличивают тонус сосудов и повышают кровяное давление. Таким же образом действует тироксин.

Нервная регуляция сосудистого тонуса осуществляется сосудосуживающими и сосудорасширяющими нервами.
Сосудосуживающими являются симпатические нервы. Первым их сосудосуживающее влияние обнаружил в 1851 г. К. Дернар, раздражая шейный симпатический нерв у кролика. Тела вазоконстрикторных симпатических нейронов расположены в боковых рогах грудных и поясничных сегментов спинного мозга. Преганглионарные волокна заканчиваются в паравертебральных ганглиях. Идущие от ганглиев постганглионарные волокна образуют на гладких мышцах сосудов а-адренергические синапсы. Симпатические вазоконстрикторы иннервируют сосуды кожи, внутренних органов, мышц. Центры симпатических вазоконстрикторов находятся в состоянии постоянного тонуса. Поэтому по ним поступают возбуждающие нервные импульсы к сосудам. За счет этого иннервируемые ими сосуды постоянно умеренно сужены.
К сосудорасширяющим относится несколько типов нервов:

  • 1. Сосудорасширяющие парасимпатические нервы. К ним относится барабанная струна, расширяющая сосуды подчелюстной слюнной железы и парасимпатические тазовые нервы;
  • 2. Симпатические холинергические вазодилататоры. Ими являются симпатическиенервы, иннервирующие сосуды скелетных мышц. Их постганглионарные окончания выделяют ацетилхолин;
  • 3. Симпатические нервы, образующие на гладких мышцах сосудов бета-адренергические синапсы. Такие нервы имеются в сосудах легких, печени, селезенки;
  • 4. Расширение сосудов кожи возникает при раздражении задних корешков спинного мозга, в которых идут афферентные нервные волокна. Такое расширение называется антидромным. Предполагают, что в этом случае из чувствительных нервных окончаний выделяются такие вазоактивные вещества, как АТФ, вещество Р, брадикинин. Они и вызывают вазодилатацию. Центральные механизмы регуляции сосудистого тонуса. Сосудодвигательные центры. В регуляции тонуса сосудов принимают участие центры всех уровней ЦНС. Низшим является симпатические спинальные центры. Они находятся под контролем вышележащих. В 1871 г. В.Д. Овсянников установил, что после перерезки ствола между продолговатым и спинным мозгом кровяное давление резко падает. Если перерезка проходит между продолговатым и средним мозгом, то давление практически не изменяется. В дальнейшем было установлено, что в продолговатом мозге на дне IV желудочка находится бульбарный сосудодвигательный центр. Он состоит из депрессорного и прессорного отделов. Прессорные нейроны в основном расположены в латеральных областях центра, а депрессорные в центральных. Прессорный отдел находится в состоянии постоянного возбуждения. В результате нервные импульсы от него постоянно идут к спинальным симпатическим нейронам, а от них к сосудам. Благодаря этому сосуды постоянно умеренно сужены. Тонус прессорного отдела обусловлен тем, что к нему непрерывно идут нервные импульсы в основном от рецепторов сосудов, а также неспецифические сигналы от рядом расположенного дыхательного центра и высших отделов ЦНС. Активирующее влияние на его нейроны оказывают углекислый газ и протоны. Регуляция тонуса сосудов в основном осуществляется именно через симпатические вазоконстрикторы путем изменения активности симпатических центров. Влияют на тонус сосудов и сердечную деятельность, и центры гипоталамуса. Например, раздражение одних задних ядер приводит к сужению сосудов и повышению кровяного давления. При раздражении других возрастает частота сердечных сокращений, и расширяются сосуды скелетных мышц. При тепловом раздражении передних ядер гипоталамуса сосуды кожи расширяются, а при охлаждении суживаются. Последний механизм играет роль в терморегуляции. Многие отделы коры также регулируют деятельность сердечнососудистой системы. При раздражении двигательных зон коры тонус сосудов возрастает, а частота сердцебиений увеличивается. Это свидетельствует о согласованности механизмов регуляции деятельности сердечнососудистой системы и органов движения. Особое значение имеет древняя и старая кора. В частности, электростимуляция поясной извилины, сопровождается расширением сосудов, а раздражение островков — к их сужению. В лимбической системе происходит координация эмоциональных реакций с реакциями системы кровобращения. Например, при сильном страхе учащаются сердцебиения и суживаются сосуды.

http://studwood.ru/1580918/meditsina/mehanizmy_regulyatsii_tonusa_sosudov

Механизмы регуляции сердечной деятельности и сосудистого тонуса.

Механизмами регуляции сердечной деятельности являются:
1. внесердечные механизмы — нервный, гуморальный;
2. внутрисердечныемеханизмы (ауторегуляция, т.е. саморегуляция): внутриклеточные регуляторные механизмы, гетерометрическая саморегуляция, гомеометрическая саморегуляция, внутрисердечные периферические рефлексы.
Внутрисердечные механизмы (саморегуляция деятельности сердца). Этомеханизмы осуществляемые либо с самого сердца, либо через вегетативную нервную систему.
Внутриклеточный механизм саморегуляции состоит в следующем: если сердечная мышца постоянно испытывает необходимость в повышенной активности, то происходит гипертрофия миокарда. Это результат проявления внутриклеточных механизмов, реагирующих на нагрузку синтезом дополнительных сократительных белков.
Гетерометрический механизм,т.е. связан с изменением длины саркомеров кардиомиоцитов.При увеличении кровенаполнения сердца в диастолу, а следовательно при увеличении растяжения мышцы сердца, сила сердечных сокращений возрастает – закон Старлинга, т.е. чем больше конечно-диастолический объём желудочков, тем больше величина систолического выброса. Закон Ф.-С. демонстрирует возможности рационального использования энергии сердцем – при оптимальной длине саркомера за одно и то же количество расходуемой энергии можно совершить больше работы.
Гомеометрический механизм (феномен Анрека, эффект Боудича).В этом случае сила сердечных сокращений зависит от ЧСС и от давления в аорте и легочном стволе. Феномен Анрека заключается в том, что при повышении давления в аорте или легочном стволе автоматически увеличивается сила сердечных сокращений (желудочков). Эффект (лестница) Боудича – это зависимость силы сокращения от частоты сердечных сокращений, т.е. чем больше ЧСС до определённого предела, тем выше сила сокращения сердечной мышцы. И наоборот, чем реже ЧСС, тем меньше сила.
Нервная регуляция деятельности сердца.[/i] Влияние нервной системы на деятельность сердца осуществляется за счет блуждающих (n. vagus) и симпатических нервов. Эти нер­вы относятся к вегетативной нервной системе. Блужда­ющие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатиче­ские нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I—V грудные сегмен­ты). Блуждающие и симпатические нервы оканчиваются в синоатриальном и атриовентрикулярном узлах, также в мускулатуре сердца.
Впервые действие блуждающих нервов на сердце показали братья Веберы в 1845 г. Слабые раздражения блуждающих нервов при­водят к замедлению ритма сердца (отрицательный хронотропный эффект), уменьшению амплитуды сокращений (отрицательный инотропный эффект), понижению возбудимости мышцы сердца (отрицательный батмопропный эффект), ухудшению проводимости сердца (отрицательный дромотропный эффект). При сильном раздражении блуждающего нерва может произойти кратковременная остановка сердечных сокращений. При длительном раздражении блуждающего нерва прекратившиеся вначале сокращения сердца возобновляются, несмотря на продолжающееся раздражение. Это явление, называемое «ускользанием» сердца из-под влияния блуждающего нерва, имеет большое биологическое значение благодаря ему обеспечивается возможность сохранения жизни при длительном раздражении блуждающего нерва, которое могло бы вызвать полную остановку сердца и гибель организма.
При раздражении симпатических нервов происходит учащение ритма сердца и увеличива­ется сила сердечных сокращений, повышается возбу­димость и тонус сердечной мышцы, а также скорость проведения возбуждения, т.е. положительные хронотропный, инотропный, батмопропный и дромотропный эффекты.
Впервые действие симпатических нервов на сердце было изучено в 1867 г. И.Ф.Ционом, а затем в 1887 г. И.П.Павловым связанное с двумя типами симпатических нервных волокон.
И.Ф.Цион описал учащение сердечной деятельности при раздражении симпатических волокон (положительный хронотропный эффект) и назвал эти волокна укорителями сердца nn. accelerantes. И.П.Павлов обнаружил симпатические нервные волокна, вызывающие усиление амплитуды сердечных сокращений (положительный инотропный эффект), и назвал их усилителями сердечной деятельности. Эти волокна являются специально трофическими, т.е. стимулируют процессы обмена веществ в сердечной мышце.
Обширные связи сердца с различными отделами нервной системы (спинной, продолговатый мозг, гипоталамус, кора больших полушарий) создают условия для разнообразных рефлекторных воздействий на деятельность сердца, осу­ществляемых через вегетативную нервную систему.
В стенках сосудов располагаются многочисленные рецепторы, обладающие способностью возбуждаться при изменении величины кровяного давления и химическо­го состава крови. Особенно много рецепторов имеется в области дуги аорты и каротидных синусов. Их еще называют сосудистые рефлексогенные зоны.
Все рефлексы, эфферентным звеном которых является сердце, делятся на несколько групп:кардиокардиальные (возникают с рецепторов сердца); вазокардиальные (возникают с рецепторов сосудистых зон); висцерокардиальные (возникают с рецепторов внутренних органов); условные рефлексы (возникают с нейронов коры головного мозга).
Нервная регуляция сосудистого тонуса.Современные данные свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Сосудосуживающее влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.
Сосудорасширяющие нервы (вазодилататоры) имеют несколько источников. Они входят в состав некоторых парасимпатических нервов. Также сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.
Сосудодвигательный центр был открыт в 1871 г. В.Ф. Овсянниковым.Находится в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления.
Сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериаль­ного давления, а раздражение второго—расширение артерий и падение давления.
Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела.
Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полу­шарий.
Рефлекторные изменения тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряжен­ные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Сопряженные сосудистые рефлексы, т. е. рефлексы, возникающие от других системе и органов, проявляются преимущественно повышением артериального давления. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и артери­альное давление повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.
Влияние коры головного мозга на сосудистый тонус. Влияние коры полушарий большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры. Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т.е. при участии коры больших полушарий. У человека при этом возникают и соответствующие ощущения (холода, тепла или боли), хотя никакого раздражения кожи не было.
Гуморальные влияния на деятельность сердца.[/i] Гуморальные влияния на деятельность сердца реали­зуются гормонами, некоторыми электролитами и други­ми высокоактивными веществами, поступающими в кровь и являющимися продуктами жизнедеятельности многих органов и тканей организма.
Ацетилхолин и норадреналин — медиаторы нервной системы — оказывают выраженное влияние на работу сердца. Действие ацетилхолина неотделимо от функций парасимпатических нервов, так как он синтезируется в их окончаниях. Ацетилхолин уменьшает возбудимость сердечной мышцы и силу ее сокращений.
Важное значение для регуляции деятельности сердца имеют катехоламины, к которым относятся норадрена­лин (медиатор) и адреналин (гормон). Катехоламины оказывают на сердце влияние, аналогичное воздействию симпатических нервов. Катехоламины стимулируют обменные процессы в сердце, повышают расход энергии и тем самым увеличивают потребность миокарда в кис­лороде. Адреналин одновременно вызывает расширение коронарных сосудов, что способствует улучшению пита­ния сердца.
В регуляции деятельности сердца особо важную роль играют гормоны коры надпочечников и щитовидной же­лезы. Гормоны коры надпочечников — минералокортикоиды — увеличивают силу сердечных сокращений миокарда. Гормон щитовидной железы — тироксин — повышает обменные процессы в сердце и увеличивает его чувстви­тельность к воздействию симпатических нервов.
Гуморальная регуляция тонуса сосудов.[/i] Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин, а также задней доли гипофиза – вазопрессин.
Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и капилляры.
К числу гуморальных сосудосуживающих факторов относится серотонин, продуцируемый в слизистой оболочке кишечника и некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Физиологическое значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного участка.
К сосудосуживающим веществам относится ацетилхолин, который образуется в окончаниях парасимпатических нервов и симпатических вазодилятаторов. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях чисто местное.
Сосудорасширяющим веществом является также гистамин – вещество, образующееся в стенке желудка и кишечника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.
Вопросы для самоконтроля
1. Что относится к системе кровообращения?
2. Перечислите фазы сердечного цикла и укажите их длительность.
3. Какие специфические образования составляют проводящую систему сердца его водители ритма?
4. Какие физиологическими свойствами обладает сердечная мышца?
5. Укажите виды артериального давления?
6. Назовите факторы определяющие уровень артериального давления?
7. Назовите механизмы регуляции сердечной деятельности и сосудистого тонуса?

http://studopedia.ru/19_249202_mehanizmi-regulyatsii-serdechnoy-deyatelnosti-i-sosudistogo-tonusa.html

Механизмы регуляции сердца и сосудов

Исследование способа активного управления функциями организма и его поведением для поддержания оптимального уровня жизнедеятельности. Воздействие блуждающих нервов на сердце. Типология механизмов регулирования сердечной деятельности и тонуса сосудов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
НАЦИОНАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ, СПОРТА И ЗДОРОВЬЯ ИМЕНИ П.Ф. ЛЕСГАФТА, САНКТ-ПЕТЕРБУРГ
ПО ДИСЦИПЛИНЕ: ФИЗИОЛОГИЯ
МЕХАНИЗМЫ РЕГУЛЯЦИИ СЕРДЦА И СОСУДОВ
1. Механизмы регуляции сердечной деятельности
2. Механизмы регуляции тонуса сосудов
Сердце находится под постоянным действием нервной системы и гуморальных факторов. Организм находится в разных условиях существования. Результатом работы сердца — нагнетание крови в большой и малый круги кровообращения. Оценивается минутным объемом крови. В нормальном состоянии за 1 минуту — 5 л. крови выталкивают оба желудочка. Таким образом, мы можем оценить работу сердцу. Систолический объем крови и частота сердечных сокращений — минутный объем крови. Для сопоставления у разных людей, введен сердечный индекс, какое количество крови в минуту приходится на 1 квадратный метр тела. Для того чтобы изменять величину объема — нужно менять данные показатели, это происходит за счет механизмов регуляции сердца.
1. Механизмы регуляции сердечной деятельности
Приспособление сердечной деятельности к изменяющимся потребностям организма осуществляется с помощью механизмов миогенной, нервной и гуморальной регуляции. Механизмами миогенной регуляции являются гетерометрический и гомеометрический. Гетерометрический механизм заключается в увеличении силы сердечных сокращений по мере растяжения сердечной мышцы. Первым эту зависимость обнаружил Старлинг, который сформулировал закон сердца: чем больше мышца сердца растягивается в диастолу, тем сильнее ее сокращение в период систолы. Следовательно, чем больше крови поступает в камеры сердца в диастолу, тем сильнее сокращение мышцы и количество выбрасываемой крови в систолу. Однако закон Старлинга соблюдается лишь при умеренном растяжении сердечной мышцы. При ее перерастяжении сила сокращений, а, следовательно, систолический объем крови падают. В состоянии покоя систолический объем крови, т. е., ее количество, выбрасываемое из желудочков, составляет 60-70 мл. Но это лишь половина крови находящейся в желудочках. Остающаяся кровь называется резервным объемом. При физической нагрузке увеличивается венозный приток к сердцу, сила его сокращений. Поэтому систолический объем возрастает до 120-150 мл. Гетерометрический механизм наиболее чувствителен и включается раньше других. Увеличение силы сокращений сердца наблюдается при увеличении объема циркулирующей крови всего на 1%. Рефлекторные механизмы активируются лишь при возрастании ОЦК на 5-10%. Гомеометрические механизмы не связаны с растяжением миокарда. Наиболее важным из них является эффект Анрепа. Он состоит в том, что при увеличении давления в аорте систолический объем первоначально снижается. Затем сила сокращений и систолический выброс растут. Миогенные механизмы регуляции обеспечивают приспособление кровообращения к относительно кратковременным нагрузкам. При длительном повышении нагрузки возникает рабочая гипертрофия миокарда: увеличиваются длина и диаметр мышечных волокон. Например, у спортсменов вес сердца может возрастать 1,5-2 раза. При постоянной перегрузке одного отдела сердца также возникает его гипертрофия. Например, гипертрофия левого желудочка развивается при гипертонической болезни.
Нервная регуляция сердечной деятельности осуществляется симпатическим и парасимпатическим отделами вегетативной нервной системы. Ядра блуждающего нерва, иннервирующего сердце, расположены в продолговатом мозге.
Блуждающие нервы заканчиваются на интрамуральных ганглиях. Постганглионарные волокна правого вагуса идут к синоатриальному узлу, а левого к атриовентрикулярному. Кроме того они иннервируют миокард соответствующих предсердий. Парасимпатических окончаний в миокарде желудочков нет. Благодаря такой иннервации, правый вагус влияет преимущественно на частоту сердцебиений, а левый на скорость проведения возбуждения в атриовентрикулярном узле.
Тела симпатических нейронов, иннервирующих сердце, расположены в боковых рогах 5-ти верхних грудных сегментов спинного мозга. Аксоны этих нейронов идут к звездчатому ганглию. От него отходят постганглионарные волокна, многочисленные ветви которых иннервируют и предсердия и желудочки. В сердце имеется развитая внутрисердечная нервная система, включающая афферентные, эфферентные, вставочные нейроны и нервные сплетения. Ее считают отделом метасимпатической нервной системы. Она начинает участвовать в регуляции сердечной деятельности лишь после потери экстрамуральной иннервации. Например, после пересадки сердца.
Блуждающие нервы оказывают следующие воздействия на сердце:
1. Отрицательный хронотропный эффект. Это уменьшение частоты сердечных сокращений. Он связан с тем, что правый вагус тормозит генерацию импульсов в синоатриальном узле. Под действием вагуса их генерация может временно прекращаться;
2. Отрицательный инотропный эффект. Снижение силы сердечных сокращений. Обусловлен уменьшением амплитуды и длительности ПД, генерируемых клетками пейсмекерами;
3. Отрицательный дромотропный эффект. Понижение скорости проведения возбуждения по проводящей системе сердца. Связан с воздействием левого вагуса на атриовентрикулярный узел. При достаточно сильном его возбуждении возможно возникновение временной атриовентрикулярной блокады;
4. Отрицательный батмотропный эффект. Это уменьшение возбудимости сердечной мышцы. Под влиянием вагуса удлиняется рефрактерная фаза.
Эти воздействия вагусов на сердце обусловлены тем, что их окончания выделяют ацетилхолин. Он связывается с М-холинорецепторами кардиомиоцитов и вызывает гиперполяризацию их мембраны. Поэтому уменьшаются возбудимость, проводимость, автоматия кардиомиоцитов, а как следствие сила сокращений.
Если длительно раздражать блуждающие нервы, остановившееся первоначально сердце начинает вновь сокращаться. Это явление называется ускользанием сердца из под влияния вагуса.
Оно является следствием параллельного усиления влияния симпатических нервов. Центры блуждающих нервов находятся в состоянии тонуса. Поэтому импульсы от них постоянно идут к сердцу. В результате имеет место функциональное торможение сердечных сокращений.
При перерезке вагусов в эксперименте или введении атропина, блокирующего передачу в холинергических синапсах, частота сердцебиений возрастает в 1,5-2 раза. Тонус центров вагуса обусловлен постоянным поступлением нервных импульсов к ним от рецепторов сосудистых рефлексогенных зон, внутренних органов, сердца.
Симпатические нервы противоположным образом воздействуют на сердечную деятельность. Они оказывают положительное хронотропное, инотропное, батмотропное и дромотропное влияния. Медиатор симпатических нервов норадреналин взаимодействует с b1-адренорецепторами мембраны кардиомиоцитов.
Происходит ее деполяризация, а в результате ускоряется медленная диастолическая деполяризация в Р-клетках синоатриального узла, увеличиваются амплитуда и длительность генерируемых ПД, возрастает возбудимость клеток проводящей системы. Вследствие этого повышаются возбудимость, автоматия, проводимость и сила сокращений сердечной мышцы. Тонус симпатических центров регуляции сердечной деятельности выражен значительно слабее, чем парасимпатических.
2. Механизмы регуляции тонуса сосудов
Миогенная регуляция. Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами.
В основе миогенного механизма лежит способность гладких мышц сосудистой стенки возбуждаться при растяжении. Именно автоматия гладких мышц создает базальный тонус многих сосудов, поддерживают начальный уровень давления в сосудистой системе.
В сосудах кожи, мышц, внутренних органов миогенная регуляция тонуса играет относительно небольшую роль.
Но в почечных, мозговых и коронарных ссудах она является ведущей и поддерживает нормальный кровоток в широком диапазоне артериального давления. Гуморальная регуляция осуществляется физиологически активными веществами, находящимися в крови или тканевой жидкости. Их можно разделить на следующие группы:
1. Метаболические факторы. Они включают несколько групп веществ:
а) неорганические ионы. Ионы калия вызывают расширение сосудов, ионы кальция суживают их;
б) неспецифические продукты метаболизма. Молочная кислота и другие кислоты цикла Кребса расширяют сосуды. Таким же образом действует повышение содержания СO2 и протонов, т. е., сдвиг реакции среды в кислую сторону;
в) осмотическое давление тканевой жидкости. При его повышении происходит расширение сосудов.
2. Гормоны. По механизму действия на сосуды делятся на 2 группы:
а) Гормоны, непосредственно действующие на сосуды. Адреналин и норадреналин суживают большинство сосудов, взаимодействуя с альфа-адренорецепторами гладких мышц. В то же время, адреналин вызывает расширение сосудов мозга, почек, скелетных мышц, воздействуя на бета-адренорецепторы. Вазопрессин преимущественно суживает вены, а ангиотензин II — артерии и артериолы. Ангиотензин II образуется из белка плазмы ангиотензиногена в результате действия фермента ренина. Ренин начинает синтезироваться в юкстагломерулярном аппарате почек при снижении почечного кровотока. Поэтому при некоторых заболеваниях почек развивается почечная гипертензия. Брадикинин, гистамин, простагландины Ерасширяют сосуды, а серотонин суживает их;
б) Гормоны опосредованного действия. АКТГ и кортикостероиды надпочечников постепенно увеличивают тонус сосудов и повышают кровяное давление. Таким же образом действует тироксин.
Нервная регуляция сосудистого тонуса осуществляется сосудосуживающими и сосудорасширяющими нервами.
Сосудосуживающими являются симпатические нервы. Первым их сосудосуживающее влияние обнаружил в 1851 г. К. Дернар, раздражая шейный симпатический нерв у кролика. Тела вазоконстрикторных симпатических нейронов расположены в боковых рогах грудных и поясничных сегментов спинного мозга. Преганглионарные волокна заканчиваются в паравертебральных ганглиях. Идущие от ганглиев постганглионарные волокна образуют на гладких мышцах сосудов а-адренергические синапсы. Симпатические вазоконстрикторы иннервируют сосуды кожи, внутренних органов, мышц. Центры симпатических вазоконстрикторов находятся в состоянии постоянного тонуса. Поэтому по ним поступают возбуждающие нервные импульсы к сосудам. За счет этого иннервируемые ими сосуды постоянно умеренно сужены.
К сосудорасширяющим относится несколько типов нервов:
1. Сосудорасширяющие парасимпатические нервы. К ним относится барабанная струна, расширяющая сосуды подчелюстной слюнной железы и парасимпатические тазовые нервы;
2. Симпатические холинергические вазодилататоры. Ими являются симпатическиенервы, иннервирующие сосуды скелетных мышц. Их постганглионарные окончания выделяют ацетилхолин;
3. Симпатические нервы, образующие на гладких мышцах сосудов бета-адренергические синапсы. Такие нервы имеются в сосудах легких, печени, селезенки;
4. Расширение сосудов кожи возникает при раздражении задних корешков спинного мозга, в которых идут афферентные нервные волокна. Такое расширение называется антидромным. Предполагают, что в этом случае из чувствительных нервных окончаний выделяются такие вазоактивные вещества, как АТФ, вещество Р, брадикинин. Они и вызывают вазодилатацию. Центральные механизмы регуляции сосудистого тонуса. Сосудодвигательные центры. В регуляции тонуса сосудов принимают участие центры всех уровней ЦНС. Низшим является симпатические спинальные центры. Они находятся под контролем вышележащих. В 1871 г. В.Д. Овсянников установил, что после перерезки ствола между продолговатым и спинным мозгом кровяное давление резко падает. Если перерезка проходит между продолговатым и средним мозгом, то давление практически не изменяется. В дальнейшем было установлено, что в продолговатом мозге на дне IV желудочка находится бульбарный сосудодвигательный центр. Он состоит из депрессорного и прессорного отделов. Прессорные нейроны в основном расположены в латеральных областях центра, а депрессорные в центральных. Прессорный отдел находится в состоянии постоянного возбуждения. В результате нервные импульсы от него постоянно идут к спинальным симпатическим нейронам, а от них к сосудам. Благодаря этому сосуды постоянно умеренно сужены. Тонус прессорного отдела обусловлен тем, что к нему непрерывно идут нервные импульсы в основном от рецепторов сосудов, а также неспецифические сигналы от рядом расположенного дыхательного центра и высших отделов ЦНС. Активирующее влияние на его нейроны оказывают углекислый газ и протоны. Регуляция тонуса сосудов в основном осуществляется именно через симпатические вазоконстрикторы путем изменения активности симпатических центров. Влияют на тонус сосудов и сердечную деятельность, и центры гипоталамуса. Например, раздражение одних задних ядер приводит к сужению сосудов и повышению кровяного давления. При раздражении других возрастает частота сердечных сокращений, и расширяются сосуды скелетных мышц. При тепловом раздражении передних ядер гипоталамуса сосуды кожи расширяются, а при охлаждении суживаются. Последний механизм играет роль в терморегуляции. Многие отделы коры также регулируют деятельность сердечнососудистой системы. При раздражении двигательных зон коры тонус сосудов возрастает, а частота сердцебиений увеличивается. Это свидетельствует о согласованности механизмов регуляции деятельности сердечнососудистой системы и органов движения. Особое значение имеет древняя и старая кора. В частности, электростимуляция поясной извилины, сопровождается расширением сосудов, а раздражение островков — к их сужению. В лимбической системе происходит координация эмоциональных реакций с реакциями системы кровобращения. Например, при сильном страхе учащаются сердцебиения и суживаются сосуды.
жизнедеятельность нерв сердце
В области ствола мозга, в ретикулярной формации продолговатого мозга и в мосте находятся сосудодвигательные стволовые центры.
На сосудодвигательные центры оказывают также влияние дыхательные центры и высшие отделы ЦНС. Регуляторные влияния этих стволовых центров осуществляются, главным образом, путем изменения тонуса симпатических нервов, тонус которых также зависит от афферентных импульсов от сердца и сосудов.

http://revolution.allbest.ru/medicine/00735833_0.html

Механизмы нервной и гуморальной регуляции сердца и сосудов.

Сердце находится под постоянным действием нервной системы и гуморальных факторов. Организм находится в разных условиях существования. Результатом работы сердца – нагнетание крови в большой и малый круги кровообращения.
Оценивается минутным объемом крови. В нормальном состоянии за 1 минуту – 5л крови выталкивают оба желудочка. Таким образом мы можем оценить работу сердцу.
Систолический объем крови и частота сердечных сокращений – минутный объем крови.
Для сопоставления у разных людей – введен сердечный индекс – какое количество крови в минуту приходится на 1 квадратный метр тела.
Для того чтобы изменять величину объема – нужна менять данные показатели, это происходит за счет механизмов регуляции сердца.
Минутный объем крови(МОК)=5л/мин
Механизмы регуляции сердца
К внутрисердечным механизмам относятся наличие плотных контактов между клетками рабочего миокарда, проводящая система сердца координирует отдельную работу камер, внутрисердечные нервные элементы, гидродинамическое взаимодействие между отдельными камерами.
Внесердечные – нервный и гуморальный механизм, который изменяют работу сердца и приспосабливают работу сердца к запросам организма.
Нервная регуляция сердце осуществляется автономной нервной системой. Сердце получает иннервацию и от парасимпатического(блуждающий) и симпатических(боковые рога спинного мозга T1-T5) нервов.
Ганглии парасимпатической системы лежат внутри сердца и там преганглионарное волокна переключаются на постганглионарные. Ядра преганглионарных – продолговатый мозг.
Симпатические — прерываются в звездчатом ганглии, где уже будут располагаться постганглионары, которые идут к сердцу.
Правый блуждающий нерв – иннервирует сино-атриальный узел, правое предсердие,
Левый блуждающий нерв к атрио-вентрикулярному узлу и правому предсердию
Правый симпатический нерв – к синусному узлу, правому предсердию и желудочку
Левый симпатический нерв – к атриовентрикулярному узлы и к левой половине сердца.
В ганглиях ацетилхолин действует на N – холинорецепторы
Симпатические выделяют норадреналин, который действует на адренорецепторы(B1)
Парасимпатические – ацетилхолин на М-холино рецепторы(мускарино)
Влияние на работу сердца.

  • Хронотропное влияние (на частоту сердечных сокращений)
  • Инотропное (на силу сердечных сокращений)
  • Батмотропное влияние (на возбудимость)
  • Дромотропное (на проводимость)
  • 1845 – братья Веберы – открыли влияние блуждающего нерва. Они перерезали нерв на шее. При раздражении правого блуждающего нерва – уряжалась частота сокращений, а могла и остановиться – отрицательный хронотропный эффект(подавление автоматии синусного узла). Если раздражался левый блуждающий нерв – ухудшалась проводимость. Атриовентрикулярный нерв отвечает за задержку возбуждения.
    Блуждающие нервы понижают возбудимость миокарда и понижают частоту сокращений.
    Под действием блуждающего нерва – замедление диастолической деполяризации p – клеток, водителей ритма. Увеличивается выход калия. Хотя блуждающий нерв вызывает остановку сердца, полностью этого сделать нельзя. Происходит возобновление сокращения сердца – ускользание из под влияния блуждающего нерва и возобновление работы сердца связано с тем, что автоматия от синусного узла переходит к атриовентрикулярному узлу, который и возвращает работу сердца с частотой в 2 раза реже.
    Симпатические влияния – изучили братья Ционы – 1867 год. При раздражении симпатических нервов Ционы обнаружили что симпатические нервы дают положительный хронотропный эффект. Дальше изучал Павлов. В 1887 году он опубликовал свою работу по влиянию нервов на работу сердца. В своих исследованиях о обнаружил, что отдельные веточки не меняя частоты увеличивают силу сокращений – положительный инотропный эффект. Дальше были открыты бамотропный и дромотропный эффект.
    Положительные влияния на работу сердца идет за счет влияния норадреналин на бета 1 адрено рецепторы, который активируют аденилатциклазу, способствуют образованию циклического АМФ, повышается ионная проницаемость мембраны. Диастолическая деполяризация происходит с большей скоростью и это вызывает более частый ритм. Симпатические нервы увеличивают распад гликогена, АТФ, тем самым они предоставляют миокарду энергетические ресурсы, повышается возбудимость сердца. Минимальная продолжительность потенциала действия в синусном узле установлена 120 мс, т.е. теоретически сердце могло бы дать нам число сокращений – 400 в минуту, но атривентрикулярный узел не способен провести более 220. Желудочки максимально сокращаются с частотой 200-220. Участи медиаторов в передаче возбуждения на сердца – установил Отто Леви в 1921. Он использовал 2 изолированных сердца лягушки, причем эти сердце питались из 1ой канюли. В одном сердце сохранялись нервные проводники. При раздражении одного сердца он наблюдал что происходило в другом. При раздражении блуждающего нерва выделялся ацетилхолин – через жидкость он оказывал влияние на работу другого сердца.
    Выделение норадреналина усиливает работу сердца. Открытие этого медиаторного возбуждения принесло Леви нобелевскую премию.
    Нервы сердца находятся в состоянии постоянного возбуждения – тонуса. В состоянии покоя особенно хорошо выражен тонус блуждающего нерва. При перерезке блуждающего нерва наблюдается учащение работы сердца в 2 раза. Блуждающие нервы постоянно угнетают автоматию синусного узла. Нормальная частота – 60-100 сокращений. Выключение блуждающих нервов(перерезка, блокаторы холино-рецепторов(атропин)) вызывают учащение работы сердца. Тонус блуждающих нервов определяется тонусом его ядер. Возбуждение ядер поддерживается рефлекторно за счет импульсов, которые приходят с барорецепторов кровеносных сосудов в продолговатый мозг от дуги аорты и каротидного синуса. На тонус блуждающих нервов влияет и дыхание. В связи с дыханием – дыхательная аритмия, когда на выдохе происходит уряжение работы сердца.
    Тонус симпатических нервов сердца в состоянии покоя выражен слабо. Если перерезать симпатические нервы – частота сокращений уменьшается на 6-10 ударов в минуту. Этот тонус увеличивается при физической нагрузке, увеличивается при различных заболеваниях. Тонус хорошо выражен у детей, у новорожденных(129-140 ударов в минуту)
    Сердце еще подвержено действию гуморального фактора – гормоны(надпочечеников – адреналин, норадареналин, щитовидной железы – тироксин и медиатор ацетилхолин)
    Гормоны оказывают + влияние на все 4 свойства сердца. На сердце влияет электролитный состав плазмы и изменяется работа сердца при изменении концентрации калия и кальция. Гиперкалимия – повышенное содержания калия в крови – очень опасное состояние, это может приводить к остановке сердца в диастолу. Гипокалимия – мене опасное состояние на кардиограмме изменение расстояния PQ, извращение зубца T. Сердце останавливается в систолу. На сердце оказывает влияние и температура тела – повышение температуры тела на 1 градус – увеличение работы сердца – на 8-10 ударов в минуту.
    Систолический объем

  • Преднагрузка(степень растяжения кардиомиоцитов перед их сокращением. Степень растяжения будет определяться тем объемом крови, что будет находится в желудочках.)
  • Сократимость(Растяжение кардиомиоцитов, где меняется длина саркомера. Обычно толщина 2 мкм. Максимальная сила сокращения кардиомиоцитов до 2,2 мкм. Это оптимальное соотношение между мостиками миозина и актиновых нитей, когда их взаимодействие максимально. Это определяет силу сокращения дальнейшее растяжение до 2,4 уменьшает сократимость. Это приспосабливает сердце к притоку крови, при его увеличение – большая сила сокращения. Сила сокращения миокарда может меняться без изменения количества крови, за счет гормонов адреналина и норадреналина, ионов кальция и пр. – увеличивается сила сокращениямиокарда)
  • Постнагрузка(Постнагрузка это то напряжение миокарда, которое должно возникнуть в систолу для открытия полулунных клапанов. Величина постнагрузки определяется величиной систолического давления в аорте и легочном стволе)
  • Закон Лапласа
    Степень напряжения стенки желудочка = Внутрижелудочное давление * радиус / толщина стенки. Чем больше внутрижелудочковое давление и чем больше радиус(величина просвета желудочка), тем напряжение стенки желудочка больше. Увеличение толщины – влияет обратнопропорционално. T=P*r/W
    Величина кровотока зависит не только от минутного объема, но и она определяется величиной периферического сопротивления, возникающего в сосудах.
    Кровеносные сосуды оказывают мощное влияние на кровоток. Все кровеносные сосуды выстланы эндотелием. Дальше эластический каркас, а в мышечных еще и гладко мышечные клетки и коллагеновые волокна. Стенка сосудов подчиняется закону Лапласа. Если внутри сосуда имеется внутрисосудистое давление и давление вызывает растяжение в стенке сосуда, то в стенке – состояние напряжения. Также влияет радиус сосудов. Напряжение будет определяться произведением давления на радиус. В сосудах мы можем различить базальный тонус сосудов. Тонус сосудов который определяется степенью сокращения.
    Базальный тонус – определяется степенью растяжения
    Нейрогуморальный тонус – влияние нервных и гуморальных факторов на тонус сосудов.
    Увеличенный радиус дает больше напряжения в стенки сосудов чем в баллончике, где радиус меньше. Для того, чтобы осуществлялся нормальный кровоток и обеспечивалось адекватное кровоснабжение существуют механизмы регуляции сосудов.
    Они представлены 3мя группами

  • Местная регуляция кровотока в ткани
  • Нервная регуляция
  • Гуморальная регуляция
  • Тканевой кровоток обеспечивает
    -доставку кислорода клеткам
    -доставку питательных веществ(глюкоза, аминокислоты, жирные кислоты и др.)
    -удаление протонов H+
    Регуляция кровотока – краткосрочная(несколько секунд или минут в результате локальных изменений в тканях) и долгосрочная(происходит в течении часов, дней и даже недель. Эта регуляция связана с образование в тканях новых сосудов)
    Образование новых сосудов связано с увеличением объема ткани, увеличение интенсивности обмена веществ в ткани.
    Ангеогенез – образование сосудов. Это идет под действием факторов роста – сосудистый эндотелиальный фактор роста. Фактор роста фибробласта и ангиогенин
    Гуморальная регуляция сосудов

  • 1.Вазоактивные метаболиты
  • а. Расширение сосудов обеспечивают – уменьшение pO2, Увеличение – CO2, t, K+ молочной кислоты, аденозина, гистамина
    б.сужение сосудов вызывают – увеличение серотонина и уменьшение температуры.
    2. Влияние эндотелия
    -Оксид азота NO – расширение
    Образование оксида азота(NO)

  • Освобождение Ach, брадикинина
  • Открытие Ca+ каналов в эндотелии
  • Связывание Ca+ с кальмодулином и его активация
  • Активация фермента (синтетазы оксида азота)
  • Превращение L фргинина в NO
  • Механизм действия NO
    NO – активирует гуанилциклазу ГТФ – цГМФ- открытие К каналов – выход K+ — гиперполяризация – снижение проницаемости кальция-расширение гладких мышц и расширение сосудов.
    -Обладает цитотоксическим действием на бактерии и клетки опухоли при выделение из лейкоцитов
    -Является медиатором передачи возбуждеия в некотоырх нейронах головного мозга
    -Медиатор парасимпатических постганглионарных волокон для сосудов полового члена
    -возможно принимает участие в механизмах памяти и мышления
    Кининоген с ВМВ – брадикинин(при Плазменный калликреине)
    Кининоген с YVD – каллидин(при тканевом калликреине)
    Кинины образуются при активной деятельности потовых желез, слюнных желез и поджелудочной железы.

    http://dendrit.ru/page/show/mnemonick/mehanizmy-nervnoy-i-gumoralnoy-regulyaci/

    Добавить комментарий

    1serdce.pro
    Adblock detector