Глицеролфосфатный челночный механизм — Студопедия

Содержание

Глицеролфосфатный челночный механизм

Ключевыми ферментами глицеролфосфатного челнока являются изоферменты глицерол-3-фосфат-дегидрогеназы – цитоплазматический и митохондриальный. Они отличаются своими коферментами: у цитоплазматической формы – НАД, у митохондриальной – ФАД.
В цитозолеметаболиты гликолиза – диоксиацетонфосфат и НАДН образуют глицерол-3-фосфат, поступающий в матрикс митохондрий. Там он окисляется с образованием ФАДН2. Далее ФАДН2 направляется в дыхательную цепь и используется для получения энергии. Таким образом, в результате действий челнока цитозольный НАДН+H + как бы \»превращается\» в митохондриальный ФАДН2.
Этот челнок активен в печени и белых скелетных мышцах и необходим для получения энергиииз глюкозы при работе клетки.

Схема работы глицерол-фосфатной челночной системы
Однако, если в клетке имеется избыток энергии (состояние покоя, после еды), то часть глицерол-3 фосфата в митохондрию не пойдет, а будет использоваться в цитозоле гепатоцитов для синтеза фосфолипидов и триацилглицеролов.
78.30.251.74 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)

очень нужно

http://studopedia.ru/15_22475_glitserolfosfatniy-chelnochniy-mehanizm.html

НАДН гликолиза могут доставляться в митохондрии

Молекулы НАДН, образованные в шестой реакции гликолиза, в зависимости от наличия кислорода имеют, как минимум, два пути своего дальнейшего превращения:

  • либо остаться в цитозоле и вступить в одиннадцатую реакцию гликолиза ( анаэробные условия),
  • либо проникнуть в митохондрию и окислиться в дыхательной цепи ( аэробные условия).

Челночные системы

Так как сама молекула НАДН через мембрану не проходит, то существуют специальные системы, принимающие атомы водорода от НАДН в цитоплазме и отдающие их в матриксе митохондрий. Эти системы получили название челночные системы .
Определены две основные челночные системы – глицеролфосфатная и малат-аспартатная.

Глицеролфосфатный челночный механизм

Ключевыми ферментами глицеролфосфатного челнока являются изоферменты глицерол-3-фосфат-дегидрогеназы – цитоплазматический и митохондриальный. Они отличаются своими коферментами: у цитоплазматической формы – НАД, у митохондриальной – ФАД.
В цитозоле метаболиты гликолиза – диоксиацетонфосфат и НАДН образуют глицерол-3-фосфат , поступающий в митохондрии. Там он окисляется с образованием ФАДН2. Далее ФАДН2 направляется в дыхательную цепь и используется для получения энергии. Таким образом, в результате действий челнока цитозольный НАДН+H + как бы \»превращается\» в митохондриальный ФАДН2.

Схема работы глицерол-фосфатной челночной системы

Этот челнок активен в печени, в белых скелетных мышцах и в бурой жировой ткани. Однако в гепатоците в состоянии покоя и после еды часть глицерол-3 фосфата в митохондрию не пойдет, а будет использоваться в цитозоле для синтеза фосфолипидов и триацилглицеролов.

Малат-аспартатный челночный механизм

Ключевыми ферментами этого челнока являются изоферменты малатдегидрогеназы – цитоплазматический и митохондриальный. Он является распространенным по всем тканям.
Этот механизм более сложен: постоянно идущие в цитоплазме при участии фермента аспартатаминотрансферазы ( АСТ ) реакции трансаминирования аспарагиновой кислоты с ?-кетоглутаратом поставляют оксалоацетат, который под действием цитозольного пула малатдегидрогеназы и за счет \»гликолитического\» НАДН восстанавливается до яблочной кислоты (малата).
Последняя антипортом с ?-кетоглутаратом проникает в митохондрии и, являясь метаболитом ЦТК, окисляется в оксалоацетат с образованием НАДН. Так как мембрана митохондрий непроницаема для оксалоацетата, то он при помощи аспартатаминотрансферазы трансаминируется до аспарагиновой кислоты, которая в обмен на глутамат выходит в цитозоль.
Таким образом, атомы водорода от цитозольного НАДН перемещаются в состав митохондриального НАДН.

http://biokhimija.ru/lekcii-po-biohimii/22-stroenie-obmen-uglevodov/114-chelnoki.html

Пентозофосфатный шунт. Основные этапы, биохимическое значение.

глюконеогенезе участвует витамин Н, который по химической природе представляет собой серосодержащий гетероцикл с остатками валериановой кислоты. Он широко распространён в животных и растительных продуктах (печень, желток). Суточная потребность в нём составляет 0,2 мг. Авитаминоз проявляется дерматитом, поражением ногтей, увеличением или уменьшением образования кожного жира (себорея). Биологическая роль витамин Н:
10. участвует в реакциях карбоксилирования
11. участвует в реакциях транскарбоксилирования
12. участвует в обмене пуриновых оснований, некоторых аминокислот.
Глюконеогенез активен в последние месяцы внутриутробного развития. После рождения ребёнка активность процесса возрастает, начиная с третьего месяца жизни.
Пентозофосфатный путь — альтернативный аэробный способ окисления глюкозы, в котором из глюкозы образуются пентозофосфаты. Этот путь иногда называется апотомическим (верхушечным) окислением. В нём выделяют 2 этапа: окислительный (необратимый) и неокислительный (обратимый).
Неокислительная часть заключается в обратимых ферментативных реакциях переноса фрагмента одного углевода на молекулу другого с образованием из пентоз глюкозо-6-фосфата. При этом в каждой неокислительной реакции общее число углеродных атомов в новых веществах равно числу углеродных атомов в исходных веществах.
Одна молекула рибулозо-5-фосфат переходит в ксилулозо-5-фосфат при участии изомеразы, вторая — в рибозо-5-фосфат при участии эпимеразы.
Затем двухуглеродный фрагмент под действием транскетолазы переносится с ксилулозо-5-фосфата на рибозо-5-фосфат с образованием седогептулозо-7-фосфата и 3-фосфоглицеринового альдегида. С седогептулозо-7-фосфата трёхуглеродный фрагмент под действием транскетолазы переносится на 3-фосфоглицериновый альдегид с образованием эритрозо-4-фосфата и фруктозо-6-фосфата. Фруктозо-6-фосфат переходит в глюкозо-6-фосфат и повторно включается в пентозофосфатный цикл.
Оценка биохимической картины биосубстратов организма.
В организме животных и человека нет специализированных рецепторов или анализаторов, которые реагировали бы на радиацию. В литературе описан радиологический парадокс – несмотря на ничтожное воздействие радиации, организм реагирует в самой выраженной степени.
При воздействии радиации фотон, попадая в молекулу биологически активного вещества «выбивает» электрон из атома биосубстрата и молекула делится на «-» заряд (выбитый электрон), остаток молекулы и ионизирующее излучение. Тропность радиации: наиболее уязвимые биосубстраты при действии радиации это фосфолипиды и нуклеиновые кислоты. Органотропность – щитовидная железа, печень, почки, мышцы, костный мозг. Наиболее поражаемые органы при инкорпорировании: органы дыхания и ЖКТ (пути поступления).
Биосубстрат теряет свою функциональную активность, молекула не выполняет свою функцию, что придает остатку молекулы биологически активного вещества чужеродные свойства – развивается «радиационный эндотоксикоз». Организм стремится избавиться от таких молекул – развивается острая лучевая болезнь.
Основы патогенеза лучевой болезни.
— Нарушается функция нуклеиновых кислот, биомембран, фосфолипидов, ферментов;
— в организме происходит накопление продуктов деструкции этих биосубстратов – радиационный эндотоксикоз.
Атака бисубстратов свободными радикалами приводит к следующим нарушениям:
— проницаемости клеточной мембраны;
— повышение деления клеток;
— снижение проведения нервных импульсов;
— нарушение окислительного фосфорилирования.
В конечном итоге нарушаются функция и структура органов и систем, что приводит к гибели организма. Одним из наиболее повреждаемых субстратов являются фосфолипиды — это ворота любой клетки. Фосфолипиды имеют углеродный скелет С – С – С, содержат жирные кислоты, двойные связи, которые являются мишенями в атаках свободных радикалов. В последствии нарушается структура двойной связи – диеновая конъюгация. Образование свободных радикалов происходит и в норме, но все зависит от интенсивности свободнорадикальных процессов. Если образование свободных радикалов повышено, то антиоксидантная система не в состоянии «погасить» уже неконтролируемый процесс ПОЛ, что приводит к гибели всего организма.
1. Серосодержащие соединения: цистеин, метионин, унитиол;
2. биогенные амины: серотонин, мексамин;
3. аминокислоты: глутаминовая кислота, аспарагиновая и их производные;
4. производные нуклеотидов: натрия нуклеинат, метилурацил, рибоксин;
5. витаминные препараты;
10. сорбенты: активированный уголь, энтеросорбент СКН;
ебования, предъявляемые к радиопротекторам:
— высокая радиопротекторная эффективность (на экспериментальной модели спасает от гибели не менее 50% животных);
— препарат не должен обладать существенным побочным действием;
— быстрое наступление радиозащитного эффекта (не позже, чем через 30 минут);
— достаточная продолжительность действия (не менее 4 часов);
— удобная лекарственная форма;
— не должны кумулировать при повторном введении;
— не должны снижать эффективность других ЛС.
Основные принципы лечебного действия радиопротекторов.
Конкуренция радиопротектора с бисубстратами за свободные радикалы. Такие вещества способны улавливать свободные радикалы. При этом биологически активные вещества остаются невредимыми. Увеличение в организме уровня экзогенных SH-групп резко уменьшает вероятность свободнорадикального воздействия радиации на эндогенные SH-группы. Радиопротекторы усиливают образование обратимых комплексов с металлами (Fe 2+ , Cu 2+ ), которые являются катализаторами свободнорадикальных реакций, а также повышают устойчивость и мобильность защитных сил организма радионуклеидов и продуктов эндотоксикоза (энтеросорбция).
Антиоксиданты – экзо- и эндогенные вещества, способные ингибировать ПОЛ. Прямые или структурные антиоксиданты – это такие препараты, которые являются «ловушками» для свободных радикалов (Витамин Е, витамин С, биофлаваноиды, витамин А).
Непрямые (функциональные) антиоксиданты – повышают функциональную активность ферментов, которые являются частью антиоксидантной системы организма (предшественники пиридиннулеотидов, предшественники глутатиона – ацетилцистеин, глутаминовая кислота, индукторы глутатионпероксидазы – вещества, содержащие селен).
Кроме того, используются энтеросорбенты. Метод энтеросорбции основан на связывании и выведении из ЖКТ радионуклеидов при их инкорпорировании. К энтеросорбентам относят: активированный уголь, силикагель, пищевые волокна.
Требования, предъявляемые к энтеросорбентам:
— разрушаться в ЖКТ;
— повреждать слизистые оболочки:
— влиять на микрофлору ЖКТ;
— выводить из организма биологически активные вещества;
— обладать органолептическими свойствами.
При этом должны хорошо эвакуироваться из кишечника.
В качестве радиопротекторов в последнее время применяются серосодержащие вещества (ацетилцистеин, цистамин). Можно в комплексную терапию включать стимуляторы лейкопоэза (пентоксил. метилурацил).
Дата добавления: 2018-06-27 ; просмотров: 68 ; ЗАКАЗАТЬ РАБОТУ

http://studopedia.net/6_108325_pentozofosfatniy-shunt-osnovnie-etapi-biohimicheskoe-znachenie.html

Глицерол фосфатный шунт

Интактные митохондрии непроницаемы для NADH и NAD+. Как же тогда происходит окисление цитоплазматического NADH дыхательной цепью? NADH образуется в процессе гликолиза при окислении глицеральдегид-3-фосфата. Чтобы гликолиз продолжал функционировать, должно происходить генерирование NAD+. Решение этой проблемы состоит в том, что через митохондриальную мембрану переносится не сам NADH, а отдаваемые им электроны. Одним из переносчиков является глицерол-3-фосфат, который легко проходит через наружную митохондриальную мембрану. Первый шаг в этом челночном механизме (рис. 14.11) — перенос электронов от NADH на дигидроксиацетонфосфат с образованием глицерол-3-фосфата. Эта реакция, катализируемая глицерол-3-фосфат — дегидрогеназой, протекает в цитозоле. Глицерол-3-фосфат поступает затем в митохондрии, где он снова окисляется в дигидроксиацетонфосфат при участии FAD-простетической группы дегидрогеназы, которая связана с внутренней митохондриальной мембраной. FAD-зависимая глицерол-дегидрогеназа митохондрий отличается от NAD + -зависимой глицерол-дегидрогеназы цитозоля. Образовавшийся при окислении глицерол-3-фосфата дигидроксиацетонфосфат далее диффундирует из митохондрий в цитозоль, завершая челночный процесс.

Рис. 14.11. Глицеролфосфатный челночный механизм.
Суммарная реакция может быть изображена следующим образом:

Восстановленный флавин внутри митохондрий переносит свои электроны на дыхательную цепь на уровне кофермента Таким образом, при окислении дыхательной цепью NADH, который переносится глицеролфосфатным челночным механизмом, образуются две, а не три молекулы АТР. На первый взгляд может показаться, что в каждом цикле этого процесса одна молекула АТР теряется. Такой низкий выход связан с предпочтительным использованием в митохондриях FAD, а не NAD + в качестве акцептора электронов в реакции, катализируемой глицерол-3-фосфат-дегидрогеназой. Использование FAD делает возможным перенос электронов в митохондрии от цитоплазматического NADH против градиента концентрации NADH. «Цена» такого транспорта — одна молекула АТР на два электрона. Глицеролфосфатный челночный механизм играет особенно важную роль в летательных мышцах насекомых.
В сердце и печени электроны транспортируются в митохондрии от цитоплазматического NADH благодаря малат-аспартатному челночному механизму, который опосредуется двумя мембранными переносчиками и четырьмя ферментами. В цитозоле происходит перенос электронов от NADH на малат, который проходит сквозь внутреннюю митохондриальную мембрану и затем вновь окисляется с образованием NADH в митохондриальном матриксе. Ок-салоацетат не проходит легко через внутреннюю митохондриальную мембрану и должен превратиться в результате реакции трансаминирования в аспартат, способный проходить сквозь данный барьер. Суммарная реакция малат-аспартатного челночного механизма описывается следующим уравнением:

Этот механизм в противоположность глицеролфосфатному челночному механизму характеризуется легкой обратимостью. Следовательно, NADH может поступать в митохондрии по малат-аспартатному челночному механизму только при условии, что отношение выше в цитозоле, чем в митохондриальном матриксе. При переносе электронов от NADH к митохондриальной дыхательной цепи с помощью данного механизма не происходит поглощения энергии, и на каждую транспортируемую молекулу NADH синтезируются три молекулы АТР.

http://know.alnam.ru/book_bio2.php?id=64

Глицерол-фосфатной и малат-аспартатный челночные механизмы

НАДН гликолиза могут доставляться в митохондрии

Молекулы НАДН, образованные в шестой реакции гликолиза, в зависимости от наличия кислорода имеют, как минимум, два пути своего дальнейшего превращения:

  • либо остаться в цитозоле и вступить в одиннадцатую реакцию гликолиза (анаэробные условия);
  • либо проникнуть в митохондрию и окислиться в дыхательной цепи (аэробные условия).

Челночные системы

Так как сама молекула НАДН через мембрану не проходит, то существуют специальные системы, принимающие атомы водорода от НАДН в цитоплазме и отдающие их в матриксе митохондрий. Эти системы получили название челночные системы.
Определены две основные челночные системы — глицеролфосфатная и малат-аспартатная. На основании наличия алкогольдегидрогеназы во многих тканях, в том числе и в нервной, дискутируется вопрос о существовании этанол-ацетальдегидной челночной системы, однако однозначных экспериментальных доказательств пока не получено.

Глицеролфосфатный челночный механизм

Ключевыми ферментами глицеролфосфатного челнока являются изоферменты глицерол-3-фосфат-дегидрогеназы — цитоплазматический и митохондриальный. Они отличаются своими коферментами: у цитоплазматической формы — НАД, у митохондриальной — ФАД.
В цитозоле метаболиты гликолиза — диоксиацетонфосфат и НАДН образуют глицерол-3-фосфат, поступающий в матрикс митохондрий. Там он окисляется с образованиемФАДН2. Далее ФАДН2 направляется в дыхательную цепь и используется для получения энергии. Таким образом, в результате действий челнока цитозольный НАДН+H + как бы «превращается» в митохондриальный ФАДН2.
Этот челнок активен в печени и белых скелетных мышцах и необходим для получения энергии из глюкозы при работе клетки. Однако, если в клетке имеется избыток энергии (состояние покоя, после еды), то часть глицерол-3 фосфата в митохондрию не пойдет, а будет использоваться в цитозоле гепатоцитов для синтеза фосфолипидов и триацилглицеролов.

Малат-аспартатный челночный механизм

Ключевыми ферментами этого челнока являются изоферменты малатдегидрогеназы — цитоплазматический и митохондриальный. Он является распространенным по всем тканям.
Этот механизм более сложен: постоянно идущие в цитоплазме при участии фермента аспартатаминотрансферазы (АСТ) реакции трансаминирования аспарагиновой кислоты с ?-кетоглутаратом поставляют оксалоацетат, который под действием цитозольного пула малатдегидрогеназы и за счет «гликолитического» НАДН восстанавливается до яблочной кислоты (малата).
Последняя антипортом с ?-кетоглутаратом проникает в митохондрии и, являясь метаболитом ЦТК, окисляется в оксалоацетат с образованием НАДН. Так как мембрана митохондрий непроницаема для оксалоацетата, то он при помощи аспартатаминотрансферазы трансаминируется до аспарагиновой кислоты, которая в обмен на глутамат выходит в цитозоль.
Таким образом, атомы водорода от цитозольного НАДН перемещаются в состав митохондриального НАДН.

http://terra-medica.ru/wiki/%D0%93%D0%BB%D0%B8%D1%86%D0%B5%D1%80%D0%BE%D0%BB-%D1%84%D0%BE%D1%81%D1%84%D0%B0%D1%82%D0%BD%D0%BE%D0%B9_%D0%B8_%D0%BC%D0%B0%D0%BB%D0%B0%D1%82-%D0%B0%D1%81%D0%BF%D0%B0%D1%80%D1%82%D0%B0%D1%82%D0%BD%D1%8B%D0%B9_%D1%87%D0%B5%D0%BB%D0%BD%D0%BE%D1%87%D0%BD%D1%8B%D0%B5_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%D1%8B

Глицеролфосфатный и малат-аспартатный челночные механизм

Молекулы цитоплазматического NADН не способны сами проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью двух челночных механизмов.
Глицеролфосфатный челночный механизм
Цитоплазматический NADН сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется NAD-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой:
Диоксиацетонфосфат + NADH + Н + Глицерол-3-фосфат + NAD +
Образовавшийся глицерол-3-фосфат легко проникает через митохондриальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) вновь окисляет глицерол-3-фосфат до диоксиацетонфосфата:
Глицерол-3-фосфат + FAD Диоксиацетонфосфат + FADН2
На уровне СoQ восстановленный флавопротеин (фермент-FADН2) вводит приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования, а диоксиацетонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим NADH + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического NADH + Н + ), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не три, а две молекулы АТР. Было показано, что с помощью глицеролфосфатного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного NADН + Н + в митохондрии.
В клетках печени, почек и сердца действует более сложный малат-аспартатный челночный механизм (Рис.27.3).
Рис.27.3. Малат-аспартатный челночный механизм
Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и аспартатаминотрансферазы как в цитозоле, так и в митохондриях. Установлено, что от цитозольного NADН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты, проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный NAD + восстанавливается в NADН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов, локализованную на внутренней мембране митохондрии. В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента аспартатаминотрансферазы вступает в реакцию трансаминирования. Образующиеся аспартат и ?-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий.
В цитозоле транспортирование регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции, происходит без потребления энергии, его «движущей силой» является постоянное восстановление в цитозоле NAD + глицеральдегид-3-фосфатом, образующимся при катаболизме глюкозы. При функционировании малат-аспартатного механизма в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТР.

http://lektsii.org/8-54327.html

Справочник химика 21

Химия и химическая технология

Глицерофосфатный челночный механизм

Рис. 8.3. а-Глицерофосфатный челночный механизм окисления цитоплазматического NADH. I — цитоплазматическая ЫАО+-зависимая дегидрогеназа, II— митохондриальный фермент. [c.167]
Рнс. 13.14. Глицерофосфатный челночный механизм переноса восстановительных эквивалентов из цитозоля в митохондрию. [c.137]
В матриксе находятся растворимые ферменты цикла лимонной кислоты и ферменты Р-окисления жирных кислот в связи с этим возникает необходимость в механизмах транспорта метаболитов и нуклеотидов через внутреннюю мембрану. Сукцинатдегидрогеназа локализована на внутренней поверхности внутренней митохондриальной мембраны, где она передает восстановительные эквиваленты дыхательной цепи на уровне убихинона (минуя первую о/в петлю). 3-Гидроксибутиратдегидрогеназа также локализована на матриксной стороне внутренней митохондриальной мембраны. Г лицерол-З-фос-фат-дегидрогеназа находится на наружной поверхности внутренней мембраны, где она участвует в функционировании глицерофосфатного челночного механизма. [c.136]
РИС. 10-13. Глицерофосфатный А) и малат-аспартатиый (Б) и челночные механизмы, обеспечивающие перенос электронов от цитоплазматического NADH в митохондрии. Жирными стрелками указан путь переносимых электронов. [c.424]
В предположении, что NADH, образовавшийся в ходе гликолиза, поступает в митохондрию с помощью латною челночного механизма (см. рис. 13.15). Если используется глицерофосфатный челночный механизм, образуется только 2 на 1 моль NADH, и количество образовавшихся фосфатных связей будет уже не 38, а 36. Расчеты проведены без учета небольших потерь АТР при сопряженном переносе в митохондрию и пирувата и при аналогичном переносе Н, свойственном малатному челночному механизму, на что уходит примерно 1 моль АТР. [c.187]
Электроны от цитоплазматического NADH поступают в митохондрии при помощи глицерофосфатного челночного механизма [c.84]
Как уже говорилось выше, перенос восстановительных эквивалентов в митохондрии для их последующей оксидации дыхательной цепью осуществляется с помощью особых челночных механизмов и в данном случае главным образом через малатаспартатный и глицерофосфатный шунты. [c.162]
Смотреть страницы где упоминается термин Глицерофосфатный челночный механизм: [c.423] [c.103] [c.137] [c.193] [c.348] Биохимия Том 3 (1980) — [ c.0 ]
Биохимия человека Т.2 (1993) — [ c.136 , c.137 ]
Биохимия человека Том 2 (1993) — [ c.136 , c.137 ]

http://chem21.info/info/98701/

Пентозофосфатный путь. Глюконеогенез. Биосинтез и мобилизация гликогена

Тема: «ПЕНТОЗОФОСФАТНЫЙ ПУТЬ. ГЛЮКОНЕОГЕНЕЗ. БИОСИНТЕЗ И МОБИЛИЗАЦИЯ ГЛИКОГЕНА»
1. Пентозофосфатный (апотомический) путь окисления глюкозо-6-фосфата: биологическая роль, локализация в клетке, основные этапы. Последовательность реакций окислительного этапа пентозофосфатного пути.
2. Глюконеогенез: биологическая роль, локализация в клетке и тканях, последовательность реакций, возможные предшественники, регуляция, баланс АТФ.
3. Биосинтез гликогена: биологическая роль, локализация в клетке и тканях, последовательность реакций, гормональная регуляция. УДФ-глюкоза – образование и использование в обмене углеводов.
4. Мобилизация гликогена: биологическая роль, локализация в тканях, последовательность реакций, гормональная регуляция.
Пентозофосфатный (апотомический) путь окисления глюкозы.
16.1.1. Пентозофосфатный путь представляет собой прямое окисление глюкозы и протекает в цитоплазме клеток. Наибольшая активность ферментов пентозофосфатного пути обнаружена в клетках печени, жировой ткани, коры надпочечников, молочной железы в период лактации, зрелых эритроцитах. Низкий уровень этого процесса выявлен в скелетных и сердечной мышцах, мозге, щитовидной железе, легких.
Пентозофосфатный путь называют также апотомическим путём, так как в его реакциях происходит укорочение углеродной цепи гексозы на один атом, который включается в молекулу СО 2 .
16.1.2. Пентозофосфатный путь выполняет в организме две важнейшие метаболические функции:
16.1.3. В пентозофосфатном пути можно выделить две фазы — окислительную и неокислительную.
Исходным субстратом окислительной фазы является глюкозо-6-фосфат, который непосредственно подвергается дегидрированию с участием НАДФ-зависимой дегидрогеназы (рисунок 16.1, реакция 1). Продукт реакции гидролизуется (реакция 2), а образующийся 6-фосфоглюконат дегидрируется и декарбоксилируется (реакция 3). Таким образом, происходит укорочение углеродной цепи моносахарида на один углеродный атом («апотомия»), и образуется рибулозо-5-фосфат.
Рисунок 16.1. Реакции окислительной фазы пентозофосфатного пути.
16.1.4. Неокислительная фаза пентозофосфатного пути начинается с реакций изомеризации. В ходе этих реакций одна часть рибулозо-5-фосфата изомеризуется в рибозо-5-фосфат, другая — в ксилулозо-5-фосфат (рисунок 16.2, реакции 4 и 5).

Рисунок 16.2. Реакции изомеризации рибулозо-5-фосфата.
Следуюшая реакция протекает при участии фермента транскетолазы, коферментом которой является тиаминдифосфат (производное витамина B 1 ). В этой реакции происходит перенос двухуглеродного фрагмента с ксилулозо-5-фосфата на рибозо-5-фосфат:

Образовавшиеся продукты взаимодействуют между собой в реакции, которая катализируется трансальдолазой и заключается а переносе остатка дигидроксиацетона на глицеральдегид-3-фосфат.
Продукт этой реакции эритрозо-4-фосфат участвует во второй транскетолазной реакции вместе со следующей молекулой ксилулозо-5-фосфата:
Таким образом, три молекулы пентозофосфатов в результате реакций неокислительной стадии превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-3-фосфата. Фруктозо-6-фосфат может изомеризоваться в глюкозо-6-фосфат, а глицеральдегид-3-фосфат может подвергаться окислению в гликолизе или изомеризоваться в дигидроксиацетонфосфат. Последний вместе с другой молекулой глицеральдегид-3-фосфата может образовывать фруктозо-1,6-дифосфат, который также способен переходить в глюкозо-6-фосфат.
16.1.5. Посредством пентозофосфатного пути может происходить полное окисление глюкозо-6-фосфата до шести молекул СО 2 . Все эти молекулы образуются из С-1-атомов шести молекул глюкозо-6-фосфата, а из образовавшихся при этом шести молекул рибулозо-5-фосфата снова регенерируются пять молекул глюкозо-6-фосфата:
Если упростить представленную схему, то получится:
Таким образом, полное окисление 1 молекулы глюкозы в пентозофосфатном пути сопровождается восстановлением 12 молекул НАДФ.
Глюконеогенез.
16.2.1. Глюконеогенез — биосинтез глюкозы из различных соединений неуглеводной природы. Биологическая роль глюконеогенеза заключается в поддержании постоянного уровня глюкозы в крови, что необходимо для нормального энергообеспечения тканей, для которых характерна непрерывная потребность в углеводах. Особенно это касается центральной нервной системы.
Роль глюконеогенеза возрастает при недостаточном поступлении углеводов с пищей. Так, в организме голодающего человека может синтезироваться до 200 г глюкозы в сутки. Глюконеогенез быстрее, чем другие метаболические процессы, реагирует на изменения диеты: введение с пищей большого количества белков и жиров активизирует процессы глюконеогенеза; избыток углеводов, наоборот, тормозит новообразование глюкозы.
Интенсивные физические нагрузки сопровождаются быстрым истощением запасов глюкозы в организме. В этом случае глюконеогенез является основным путём пополнения углеводных ресурсов, предупреждая развитие гипогликемии. Глюконеогенез в организме тесно связан также с процессами обезвреживания аммиака и поддержанием кислотно-основного баланса.
16.2.2. Основным местом биосинтеза глюкозы de novo является печень. Глюконеогенез протекает также в корковом слое почек. Принято считать, что вклад почек в глюконеогенез в физиологических условиях составляет около 10% глюкозы, синтезируемой в организме; при патологических состояниях эта доля может значительно возрастать. Незначительная активность ферментов глюконеогенеза обнаружена в слизистой тонкого кишечника.
16.2.3. Последовательность реакций глюконеогенеза представляет собой обращение соответствующих реакций гликолиза. Лишь три реакции гликолиза необратимы вследствие происходящих в ходе их значительных энергетических сдвигов:
а) фосфорилирование глюкозы; б) фосфорилирование фруктозо-6-фосфата; в) превращение фосфоенолпирувата в пируват.
Обход этих энергетических барьеров обеспечивают ключевые ферменты глюконеогенеза.
Обратный переход пирувата в фосфоенолпируват требует участия двух ферментов. Первый из них – пируваткарбоксилаза — катализирует реакцию образования оксалоацетата (рисунок 16.4, реакция 1). Коферментом пируваткарбоксилазы является биотин (витамин Н). Реакция протекает в митохондриях. Роль её заключается также в пополнении фонда оксалоацетата для цикла Кребса.
Все последующие реакции глюконеогенеза протекают в цитоплазме. Мембрана митохондрий непроницаема для оксалоацетата, и он переносится в цитоплазму в виде других метаболитов: малата или аспартата. В цитоплазме указанные соединения вновь переходят в оксалоацетат. При участии фосфоенолпируваткарбоксикиназы из оксалоацетата образуется фосфоенолпируват (рисунок 16.4, реакция 2).
Фосфоенолпируват в результате обращения ряда реакций гликолиза переходит во фруктозо-1,6-дифосфат. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируетсяфруктозодифосфатазой (рисунок 16.4, реакция 3).
Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат. Заключительной реакцией глюконеогенеза является гидролиз глюкозо-6-фосфата при участии фермента глюкозо-6-фосфатазы (рисунок 16.4, реакция 4).

Рисунок 16.4. Обходные реакции глюконеогенеза.
16.2.4. Основными источниками глюкозы в глюконеогенезе являются лактат, аминокислоты, глицерол и метаболиты цикла Кребса.
Лактат – конечный продукт анаэробного окисления глюкозы. Может включаться в глюконеогенез после окисления до пирувата в лактатдегидрогеназной реакции (см. раздел «Гликолиз», рисунок 15.4, реакция 11). При продолжительной физической работе основным источником лактата является скелетная мускулатура, в клетках которой преобладают анаэробные процессы. Накопление молочной кислоты в мышцах ограничивает их работоспособность. Это связано с тем, что при повышении концентрации молочной кислоты в ткани снижается уровень рН (молочнокислый ацидоз). Изменение рН приводит к ингибированию ферментов важнейших метаболических путей. В утилизации образующейся молочной кислоты важное место принадлежитглюкозо-лактатному циклу Кори (рисунок 16.5).

Рисунок 16.5. Цикл Кори и глюкозо-аланиновый цикл (пояснения в тексте).
Глюкогенные аминокислоты, к которым относятся большинство белковых аминокислот. Ведущее место в глюконеогенезе среди аминокислот принадлежит аланину, который может превращаться в пируват путём трансаминирования. При голодании, физической работе и других состояниях в организме функционирует глюкозо-аланиновый цикл, подобный циклу Кори для лактата (рисунок 16.2). Существование цикла аланин – глюкоза препятствует отравлению организма, так как в мышцах нет ферментов, утилизирующих аммиак. В результате тренировки мощность этого цикла значительно возрастает.
Другие аминокислоты могут, подобно аланину, превращаться в пируват, а также в промежуточные продукты цикла Кребса (?-кетоглутарат, фумарат, сукцинил-КоА). Все эти метаболиты способны преобразовываться в оксалоацетат и включаться в глюконеогенез.
Глицерол – продукт гидролиза липидов в жировой ткани. Этот процесс значительно усиливается при голодании. В печени глицерол превращается в диоксиацетонфосфат – промежуточный продукт гликолиза и может быть использован в глюконеогенезе.
Жирные кислоты и ацетил-КоА не являются предшественниками глюкозы. Окисление этих соединений обеспечивает энергией процесс синтеза глюкозы.
16.2.5. Энергетический баланс. Путь синтеза глюкозы из пирувата (рисунок 16.6) содержит три реакции, сопровождающиеся потреблением энергии АТФ или ГТФ:
а) образование оксалоацетата из пирувата (затрачивается молекула АТФ); б) образование фосфоенолпирувата из оксалоацетата (затрачивается молекула ГТФ); в) обращение первого субстратного фосфорилирования – образование 1,3-дифосфоглицерата из 3-фосфоглицерата (затрачивается молекула АТФ).
Каждая из этих реакций повторяется дважды, так как для образования 1 молекулы глюкозы (С 6 ) используются 2 молекулы пирувата (С 3 ). Поэтому энергетический баланс синтеза глюкозы из пирувата составляет – 6 молекул нуклеозидтрифосфатов (4 молекулы АТФ и 2 молекулы ГТФ). При использовании других предшественников энергетический баланс биосинтеза глюкозы отличается.

Рисунок 16.6. Энергетический баланс биосинтеза глюкозы из лактата.
16.2.6. Регуляция глюконеогенеза. Скорость глюконеогенеза определяется доступностью субстратов – предшественников глюкозы. Увеличение концентрации в крови любого из предшественников глюкозы приводит к стимуляции глюконеогенеза.
Некоторые метаболиты являются аллостерическими эффекторами ферментов глюконеогенеза. Например, ацетил-КоА в повышенных концентрациях аллостерически активирует пируваткарбоксилазу, катализирующую первую реакцию глюконеогенеза. Аденозинмонофосфат, наоборот, оказывает ингибирующее действие на фруктозодифосфатазу, а избыток глюкозы ингибирует глюкозо-6-фосфатазу.
Гормон поджелудочной железы глюкагон, гормоны надпочечников адреналин и кортизол повышают скорость биосинтеза глюкозы в организме, увеличивая активность ключевых ферментов глюконеогенеза либо увеличивая концентрацию этих ферментов в клетках. Гормон поджелудочной железы инсулин способствует снижению скорости глюконеогенеза в организме.

http://dendrit.ru/page/show/mnemonick/pentozofosfatnyy-put-glyukoneogenez-bios/

ГЕКСОЗОМОНОФОСФАТНЫЙ ШУНТ

ГЕКСОЗОМОНОФОСФАТНЫЙ ШУНТ – ферментативный процесс прямого аэробного окисления фосфорилированной глюкозы до CO2 и H2O, протекающий в цитоплазме живых клеток и сопровождающийся накоплением важного кофермента – восстановленного никотинамидадениндинуклеотидфосфата (НАДФ-Н)- и образованием производных пентоз, откуда он и получил другие названия – пентозофосфатный или пентозный путь или цикл. Он известен еще и как фосфоглюконатный цикл. Свое название этот путь получил потому, что при его реализации глюкозо-6-фосфат (Г6Ф) выключается из гликолиза. Этот шунт был исследован в 1950-е Ф.Дикенсом, Ф.Липманом, Э.Рэкером и Б.Хорекером после открытия (О.Варбург, 1931) глюкозо-6-фосфатдегидрогеназы (КФ1.1.1.49). Гексозомонофосфатный шунт состоит из окислительного декарбоксилирования (3 первых реакции) Г6Ф (от гексозы отщепляется первый атом углерода) и неокислительных превращений пентозофосфатов (5 последующих реакций) с образованием исходного Г6Ф:

6 Г6Ф + 12НАДФ + = 6CO2 + 12НАДФ-Н + 12H + + 5 Г6Ф + H3PO4
Полная последовательность его такова:

1) НАДФ + + Г6Ф = 6-фосфоглюконолактон + НАДФ-Н + Н +
2) 6-фосфоглюконолактон + Н2О = 6-фосфоглюконат

3) НАДФ + + 6-фосфоглюконат = рибулозо-5-фосфат + СО2 + НАДФ-Н + Н +
4) рибулозо-5-фосфат = рибозо-5-фосфат
5) рибулозо-5-фосфат = ксилозо-5-фосфат
6) рибозо-5-фосфат + ксилозо-5-фосфат = глицеральдегид-3-фосфат + седогептулозо-7-фосфат
7) седогептулозо-7-фосфат + глицеральдегид-3-фосфат = фруктозо-6-фосфат + эритрозо-4-фосфат
8) ксилозо-5-фосфат + эритрозо-4-фосфат = фруктозо-6-фосфат + глицеральдегид-3-фосфат
Многие промежуточные соединения гексозомонофосфатного шунта могут участвовать в других процессах в организме – гликолизе, фотосинтезе и др. Ферменты гексозомонофосфатного шунта найдены в тканях животных, растений и в микроорганизмах. Его главные метаболические функции заключаются в том, чтобы:
1) служить источником НАДФ-Н для анаболических (биосинтетических) путей и 2) обеспечить промежуточные продукты для других биосинтезов, особенно рибозо-5-фосфата для синтеза нуклеиновых кислот и эритрозо-4-фосфата для биосинтеза фенилаланина, тирозина и триптофана. Важная особенность гексозомонофосфатного шунта – его гибкость: в разных ситуациях он может функционировать частично, и суммарный результат будет различным. Доля шунта в количественном превращении глюкозы обычно невелика, варьируется у разных организмов и зависит от типа ткани и её функционального состояния. У млекопитающих активность гексозомонофосфатного шунта высока в печени, надпочечниках, в эмбриональной ткани и в молочной железе в период лактации. Особенно высока его активность в жировой ткани и эритроцитах (ок. 50%). Главным регуляторным звеном шунта является первый фермент глюкозо-6-фосфатдегидрогеназа. Центральные стадии шунта – перестройка углеродного скелета сахаров – катализируются трансальдолазой (КФ 2.2.1.2) и транскетолазой (КФ 2.2.1.1). Для активности последней необходимы ионы Мg 2+ и тиаминпирофосфат – метаболически активная форма витамина В1.
Врожденная недостаточность некоторых ферментов гексозомонофосфатного шунта в организме человека приводит к гемолитическим анемиям, синдрому Вернике – Корсакова и т.п. Скорость его определяется, в первую очередь, концентрацией НАДФ-Н. Он регулируется инсулином и другими гормонами, влияющими на углеводный обмен, а также глутатионом.
Hollmann S. Non-glycolytic pathways of metabolism of glucose. N. Y., 1964
Страйер Л. Биохимия, пер. с англ., М., Мир, 1985
Бохински Р. Современные воззрения в биохимии, пер. с англ., М, Мир, 1987

http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/GEKSOZOMONOFOSFATNI_SHUNT.html

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбо-новых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль «клеточного топлива»: углеводов, жирных кислот и аминокислот.
Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса.

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.
В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата:

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .
Во время четвертой реакции происходит окислительное декарбокси-лирование ?-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА, ?-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, HS-KoA, ФАД и НАД + .

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной:

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота:

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавшийся ФАДН2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.
Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО2 и Н2О, то он окажется значительно большим.
Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С6Н12О6 + 6О2 —> 6СО2 + 6Н2О синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.
Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.
руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:
Дигидроксиацетонфосфат + НАДН + Н + Глицерол-3-фосфат + НАД + .
Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:
Глицерол-3-фосфат + ФАД Диоксиацетонфосфат + ФАДН2.
Восстановленный флавопротеин (фермент-ФАДН2) вводит на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования, а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН + Н + ), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ.

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.
В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии.
В клетках печени, почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях.
Установлено, что от цитозольного НАДН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы (рис. 10.11) переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты, проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД + восстанавливается в НАДН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов, локализованную на внутренней мембране митохондрии. В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента АсАТ вступает в реакцию трансаминирования. Образующиеся аспарат и ?-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий.
Транспортирование в цитозоле регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции, происходит без потребления энергии, «движущей силой» его является постоянное восстановление НАД + в цитозоле гли-церальдегид-3-фосфатом, образующимся при катаболизме глюкозы.
Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

В табл. 10.1 приведены реакции, в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы, с указанием эффективности процесса в аэробных и анаэробных условиях.

http://www.xumuk.ru/biologhim/151.html

Добавить комментарий

1serdce.pro
Adblock detector