Нарушения функций вегетативной нервной системы, Справочник врача

Нарушения функций вегетативной нервной системы

Нарушения вегетативной иннервации органов и тканей могут возникнуть при повреждениях в различных звеньях вегетативной нервной системы.

Повреждения гипоталамуса

Высшим интеграционным и организационным центром всех вегетативных функций является гипоталамус. Хотя в нем не имеется точечных, четко очерченных центров, установлено, что стимуляция переднего отдела гипоталамуса вызывает вегетативные реакции, связанные с активацией парасимпатической нервной системы (снижение кровяного давления, брадикардия, урежение дыхания и т. д.).

Раздражение заднего отдела гипоталамуса приводит к повышению тонуса симпатической нервной системы и появлению соответствующих вегетативных реакций — увеличения кровяного давления, тахикардии, учащения дыхания (рис. 135).
Гипоталамус является не только центром вегетативной нервной системы, но и функционирует как эндокринный орган. В настоящее время выделено 7 рилизинг-факторов гипоталамуса, регулирующих деятельность гипофиза. Это факторы, стимулирующие выделение гипофизом АКТГ, СТГ, тиреотропина, фолликулостимулирующего гормона, лютеинизирующего гормона, а также фактора, тормозящего выделение гипофизом мелано-цитостимулирующего гормона. Если к тому же учесть, что гормоны окситоцин и вазопрессин (антидиуретический гормон) образуются в нейросекреторных ядрах переднего гипоталамуса и затем депонируются в задней доле гипофиза, следует рассматривать систему гипоталамус — гипофиз как единый эндокринный комплекс. Поэтому патологические процессы, возникающие в результате повреждения различных отделов гипоталамуса и гипофиза, нужно анализировать с точки зрения нарушения деятельности этого важнейшего эндокринного аппарата.
При поражениях (травмы, опухоли, кровоизлияния и др.) в области вегетативных ядер гипоталамуса возникают различные вегетативные нарушения в зависимости от локализации повреждения.
Повреждение ядер переднего гипоталамуса вызывает нарушение углеводного обмена. Развивается активация перехода гликогена в сахар, увеличение содержания сахара в крови и состояние типа транзиторной формы сахарного диабета. Повреждение надоптического ядра переднего гипоталамуса сопровождается нарушением гипоталамо-гипофизарных связей с задним гипофизом. Уменьшается секреция антидиуретического гормона. Вследствие этого возникает увеличение мочеотделения — полиурия. При обезвоживании организма нейросекреция этих ядер гипоталамуса увеличивается. Это вызывает повышение секреции АКТГ и альдостерона. Увеличивается реабсорбция воды в канальцах. Сокращается мочеотделение.
Разрушения заднего и среднего гипоталамуса тормозят секрецию кортикостероидов.
Электрическое раздражение ядер заднего гипоталамуса (вживление электродов) увеличивало секрецию кортикостероидов. Раздражение задних участков серого бугра и мамиллярных тел также вызывало секрецию кортикостероидов и лимфопению.
Повреждение клеток ядер среднего гипоталамуса вызывает расстройство вегетативной иннервации слюнных желез парасимпатической природы и сопровождается усиленным слюноотделением. В среднем гипоталамусе располагаются также области, повреждения которых влияют на тепло-регуляцию.
Повреждение области вентро-медиальных ядер приводит к нарушению жирового обмена. Возникает резкое ожирение вследствие полифагии и торможения процессов окисления жиров. Повреждение ядер заднего гипоталамуса, по некоторым данным, вызывает торможение синтеза белков крови. Особое значение имеет влияние повреждения этого отдела гипоталамуса (латеральное гипоталамическое ядро и туберомамиллярные ядра) на минеральный обмен. Повреждение этих, а также ядер среднего отдела гипоталамуса (вентро-медиальное, дорсомедиальное; инфундибулярное ядра и др.) вызывает существенное изменение минерального обмена.
Увеличивается выделение натрия с мочой. Этот эффект реализуется через уменьшение действия нейросекретов указанных выше отделов гипоталамуса на клетки передней доли гипофиза. Возникает угнетение секреции адренокортикотропного гормона гипофиза и альдостерона коры надпочечников, который, как известно, задерживает выделение натрия из организма.
Гипоталамус может влиять на деятельность желудочно-кишечного тракта. Так, например, раздражение переднего отдела гипоталамуса вызывает усиление перистальтики кишечника, а раздражение задней области гипоталамуса — ее угнетение. Было отмечено, что поражение гипоталамуса на уровне серого бугра вызывало у обезьян кровоизлияния в желудок, пептическую язву и прободение желудка.
Отделение гипоталамуса от гипофиза вызывает атрофию щитовидной железы. В свою очередь удаление щитовидной железы тормозит нейросекрецию ядер переднего гипоталамуса.
Таким образом, здесь имеется обратная связь в виде взаимной регуляции функций щитовидной железы и гипоталамуса.
Разрушение парасимпатических (латеральных) ядер гипоталамуса у крыс приводит к раннему аборту, а в конце беременности вызывает преждевременные роды. Стимуляция или разрушение симпатических (вентро-медиальных) ядер у кошек и крыс не влияло на течение беременности.
Разрушение вентро-медиальных ядер существенно отражается на овариально-менструальном цикле. У животных прекращается течка, увеличивается вес матки, исчезают желтые тела в яичнике. Эти изменения сопровождаются ожирением.

Повреждение симпатической иннервации

Экспериментально в несколько приемов можно удалить все узлы симпатической цепочки и паравертебральные узлы у кошки и изучить жизнедеятельность такого животного. Указанная операция называется полной десимпатизацией. Напомним, что удаление симпатической цепочки, т. е. всех узлов, пограничных позвоночному столбу, нарушает сосудодвигательную и трофическую иннервацию многих органов. В результате наблюдается выпадение многих функций, среди которых особое значение имеет влияние десимпатизации на кровообращение, обмен веществ, деятельность гладкомышечных органов и пр. Влияние десимпатизации на кровообращение сказывается в выпадении сосудосуживающего действия на артериолы многих областей тела симпатической иннервации. Происходит расширение артериол и падает артериальное давление. Выключение симпатической иннервации сердца (усиливающий нерв Павлова и другие нервы) приводит к ослаблению и замедлению сердечных сокращений. Эти эффекты, однако, могут компенсироваться за счет рефлекса с барорецепторов кровеносных сосудов, вызванного падением артериального давления. Ослабление раздражения барорецепторов, вызванное падением кровяного давления, уменьшает поток импульсов по чувствительным волокнам к центру сердечных ветвей блуждающего нерва.
Уменьшение рефлекторных раздражений сердечных центров блуждающего нерва вызывает снижение их тонического возбуждения. Это обусловливает уменьшение тонического влияния блуждающего нерва на сердце, сердце выходит из-под его влияния (феномен «ускользания») и развивается тахикардия.
Влияние десимпатизации на гладкомышечные органы выражается в выпадении действия симпатической иннервации на функцию того или иного органа. Например, удаление верхнего шейного симпатического узла у кролика или кошки сопровождается сужением зрачка (выпадение расширяющего зрачок влияния симпатического нерва) и расширением артерий уха вследствие выпадения сосудосуживающего влияния симпатического нерва.
Выпадение влияния симпатической нервной системы на желудочно-кишечный тракт сопровождается активацией двигательной функции желудка и особенно кишечника, так как симпатическая иннервация угнетает движения желудка и кишечника.
Симпатическая иннервация гладкомышечных сфинктеров мочевого пузыря и заднего прохода обеспечивает расслабление этих сфинктеров, а выпадение симпатической иннервации способствует их спастическому сокращению. Таково же отношение симпатической иннервации к сфинктеру Одди, регулирующему поступление желчи из желчного пузыря.
Десимпатизации вызывает угнетение окислительных процессов, падение температуры тела животного, гипогликемию, лимфонению и нейтрофильный лейкоцитоз. Возникает уменьшение содержания кальция и увеличение содержания калия в крови.
Понятно, что при явлениях раздражения симпатической нервной системы все указанные изменения обмена веществ и функций гладкомышечных органов происходят в направлении, противоположном описанному.

Повреждение парасимпатической иннервации

Нарушения парасимпатической иннервации могут возникнуть вследствие:

  • 1) повышения возбудимости и возбуждения парасимпатического отдела вегетативной нервной системы;
  • 2) угнетения или выпадения парасимпатической иннервации органов.

Возможны также извращения функций парасимпатической системы. Они называются амфатонией или дистонией.
Повышение возбудимости и возбуждение парасимпатической нервной системы. Повышение возбудимости парасимпатической нервной системы может возникнуть на фоне наследственно-конституционных влияний в виде так называемой ваготонии. В качестве примера подобного состояния можно указать на тимико-лимфатическое состояние — увеличение зобной железы и лимфатических узлов, при котором даже слабые раздражения блуждающего нерва, например электрическим током или механические (удар в подложечную область), могут вызвать моментальную смерть от остановки сердца (вагусная смерть). Это состояние чаще является выражением общего вегетативного невроза, при котором одновременно с повышением возбудимости парасимпатического отдела вегетативной нервной системы увеличивается возбудимость ее симпатического отдела.
Раздражения парасимпатических (блуждающих) нервов могут возникнуть вследствие:

  • а) раздражения центра вагуса в продолговатом мозге механически при повышении внутричерепного давления (травмы и опухоли мозга);
  • б) раздражения окончаний блуждающего нерва в сердце и других органах, например желчными кислотами при механической желтухе.

Отсюда возникают брадикардия, усиление перистальтики (понос) и другие проявления раздражений блуждающего нерва.
Возбудимость парасимпатического отдела вегетативной системы повышается под влиянием веществ, усиливающих (потенцирующих) действие медиатора парасимпатической нервной системы — ацетилхолина. К ним относятся ионы калия, витамин B1, препараты из поджелудочной железы (ваготонин), холин, некоторые инфекционные агенты: вирусы гриппа, бактерии кишечно-тифозной группы, некоторые аллергены.
Повышение возбудимости и возбуждение парасимпатической нервной системы и специально блуждающего нерва может возникнуть под влиянием веществ, угнетающих (ингибирующих) холинэстеразу. К ним относятся многие фосфорорганические соединения (тетраэтилфлюэрофосфат, тетраэтилпирофосфат и многие другие соединения этого ряда). Вещества этого типа известны также как «нервные яды», применяемые империалистами как средства химической войны. Отравление этими веществами вызывает накопление в организме ацетилхолина и смерть от избытка этого вещества. Накопление ацетилхолина в организме является также причиной отравления тетраэтилсвинцом (детонатор в двигателях внутреннего сгорания), а также марганцем.
Угнетение или выпадение парасимпатической иннервации. Угнетение или выпадение парасимпатической иннервации возникает в эксперименте у животных после удаления большей части поджелудочной железы. У таких животных резко ослабляется отрицательное хронотропное и инотропное влияние вагуса на сердце. Резко снижается синтез медиатора парасимпатической нервной системы — ацетилхолина.
Перерезка одного, а в особенности двух блуждающих нервов на шее у животных (собаки, кролики) и у человека является очень тяжелой операцией. Ваготомированные животные обычно погибают в сроки от нескольких дней до нескольких месяцев после операции. Двусторонняя ваготомия вызывает смерть значительно раньше.
Известно, что в стволах блуждающих нервов проходит до 300 различных нервных волокон в каждом. Перерезка блуждающего нерва вызывает следующие явления:

  • 1) расстройства дыхательных движений вследствие перерыва путей рефлексов с легких на дыхательный центр (рефлекса Геринга и Брейера). Дыхательные движения становятся редкими и глубокими;
  • 2) паралич мышцы, закрывающей вход в гортань при глотании. Это вызывает забрасывание пищи в гортань и легкие, способствуя развитию аспирационной пневмонии;
  • 3) гиперемию и отек легких вследствие паралича сосудосуживающих нервов в легких. Это также способствует развитию пневмонии («вагусная пневмония»);
  • 4) расстройства пищеварения вследствие торможения секреции желудочного и поджелудочного сока.

Наибольшие сроки выживания ваготомированных животных были получены И. П. Павловым при специальном кормлении их через желудочную фистулу легкоусвояемой пищей. Нарушения парасимпатической иннервации сердца вызываются также бактериальными токсинами (ботулинический, дифтерийный) и антигенами бактерий кишечно-тифозной группы.
Нарушения крестцового нарасимпатикуса (S2—S4) тазового нерва возникают при травмах или опухолях этого отдела спинного мозга или тазового нерва. Возникают расстройства мочевыделения (опорожнения мочевого пузыря), дефекации, функций половых органов.

Вегетативные неврозы

Эти весьма распространенные расстройства вегетативной иннервации чаще всего распространяются на оба отдела вегетативной нервной системы. Они заключаются в резком и длительном повышении возбудимости вегетативной нервной системы. Это выражается в расстройствах частоты и ритма деятельности сердца, нарушениях тонуса кровеносных сосудов («сосудистая дистония», «сосудистые кризы»), усиленном потоотделении или, наоборот, сухости. кожи, явлениях белого или красного дермографизма, нарушениях пищеварения (диспепсия, поносы, запоры) и др. Прежнее деление вегетативных неврозов на «симпатикотонию» и «ваготонию» в настоящее время оставлено, так как обычно нарушения происходят в обоих отделах вегетативной нервной системы.

http://spravr.ru/narusheniya-funkciy-vegetativnoy-nervnoy-sistemy.html

Функции гипоталамуса

Так, например, при внезапном возникновении опасной ситуации, угрожающей жизни, вегетативные сдвиги у человека (увеличение частоты сокращений сердца, повышение кровяного давления и т. п.) происходят быстрее, чем он обратится в бегство, т. е. такие сдвиги уже учитывают характер последующей мышечной активности.
Непосредственный контроль тонуса вегетативных центров, а значит и выходной активности вегетативной нервной системы, гипоталамус осуществляет с помощью эфферентных связей с тремя важнейшими областями (рис. 4.27). Во-первых, он регулирует активность нейронов ядра солитарного тракта, которое является главным адресатом сенсорной информации от внутренних органов, участвует в контроле температуры, кровообращения, дыхания и взаимодействует с ядром блуждающего нерва и других парасимпатических нейронов. Во-вторых, гипоталамус определяет актив-

Рис. 4.27. Схема гипоталамического контроля вегетативных функций. Эфферентный путь от гипоталамуса к ядру солитарного тракта. Эфферентный путь от гипоталамуса к ростральной вентральной области продолговатого мозга. Эфеерентный путь от гипоталамуса к вегетативным нейронам спинного мозга.
ность ростральной вентральной области продолговатого мозга, имеющей решающее значение в повышении общей выходной активности симпатического отдела. Эта активность проявляется в повышении кровяного давления, увеличении частоты сокращений сердца, секреции потовых желез, расширении зрачков и сокращении мышц, поднимающих волосы. В третьих, некоторые нейроны гипоталамуса образуют прямые проекции на вегетативные нейроны спинного мозга, что позволяет быстро изменять характер их активности. Роль гипоталамуса в регуляции эндокринных функций
Группы мелкоклеточных нейронов гипоталамуса способны действовать как нейроэндокринные преобразователи, трансформирующие кратковременные нервные импульсы в длительные гуморальные влияния. В области воронки мозга секретируемые мелкоклеточными нейронами гипоталамуса пептиды по системе портальных вен поступают в аденогипофиз (рис. 4.28) и регулируют образование его гормонов. Гипофизотропные нейроны гипоталамуса получают информацию от разветвленной афферентной сети волокон, передающих сигналы от лимбической системы, ствола, зрительной, слуховой и обонятельной сенсорных систем. В результате интеграции этой обширной информации формируется выходной сигнал в виде необходимой порции нейрогормонов.
Две разновидности крупноклеточных нейронов гипоталамуса, находящиеся в супраоптическом и паравентрикулярном ядрах, синтезируют вазо- прессин и окситоцин. Эти нейропептиды доставляются аксонным транспортом к окончаниям нейронов в задней доле гипофиза, где депонируются и
III
alt=\»\» />
Рис. 4.28. Схема гипоталамического контроля деятельности гипофиза.
1. Нейроны супраоптического и паравентрикулярного ядер гипоталамуса образуют вазопрес- син и окситоцин, которые выделяются в задней доле гипофиза в кровь.
2 и 3. Нейроны, секретирующие либерины и статины в кровеносные капилляры; через портальные вены эти пептиды поступают к эндокринным клеткам аденогипофиза.
4 и 5. Нейроны, регулирующие деятельность нейросекреторных клеток гипоталамуса.
откуда выделяются в кровь, чтобы действовать в качестве гормонов. Крупноклеточные нейроны гипоталамуса выполняют функцию нейроэндокринного преобразователя, в котором количество выделяемых нейрогормонов увеличивается пропорционально электрической активности таких клеток.

http://texts.news/fiziologiya-cheloveka_1558/funktsii-gipotalamusa-66332.html

Гипоталамус

Реферат на тему:
Гипоталамус. Физиология гипоталамуса.
Выполнила: Андреева Юлия 4207
Гипоталамус — внешний подкорковый центр вегетативной нервной системы. Эта подбугорная область промежуточного мозга долгое время является важным объектом различных научных исследований.
В настоящее время для изучения различных структур мозга широко применяется метод вживления электродов. С помощью особой стереотаксической техники через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированны на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узколокально раздражать те или иные зоны.
В этой работе рассматриваются некоторые теоретические и физиологические аспекты данной области промежуточного мозга.
Общие функции гипоталамуса.
У позвоночных гипоталамус представляет собой главный нервный центр, отвечающий за регуляцию внутренней среды организма.
Филогенетически — это довольно старый отдел головного мозга, и поэтому у наземных млекопитающих строение его относительно одинаково, в отличие от организации таких более молодых структур, как новая кора и лимбическая система.
Гипоталамус управляет всеми основными гомеостатическими процессами. В то время как децеребрированному животному можно достаточно легко сохранить жизнь, для поддержания жизнедеятельности животного с удаленным гипоталамусом требуются особые интенсивные меры, так как у такого животного уничтожены основные гомеостатические механизмы.
Принцип гомеостаза заключается в том, что при самых разнообразных состояниях организма, связанных с его приспособлением к резко изменяющимся условиям окружающей среды (например, при тепловых или холодовых воздействиях, при интенсивной физической нагрузке и так далее), внутренняя среда остается постоянной и параметры ее колеблются лишь в очень узких пределах. Наличие и высокая эффективность механизмов гомеостаза у млекопитающих, и в частности у человека, обеспечивают возможность их жизнедеятельности при значительных изменениях окружающей среды. Животные, неспособные поддерживать некоторые параметры внутренней среды, вынуждены жить в более узком диапазоне параметров среды.
Например: Способность лягушек к терморегуляции настолько ограничена, что для того, чтобы выжить в условиях зимних холодов, им приходится опускаться на дно водоемов, где вода не замерзнет. Напротив, многие млекопитающие зимой могут вести столь же свободное существование, что и летом, несмотря на значительные колебания температуры.
Отсюда понятно — в связи со слабым развитием механизмов гомеостаза, эти животные менее свободны в своей жизнедеятельности, а если удален гипоталамус, следственно нарушены гомеостатические процессы, то для поддержания жизнедеятельности этого животного необходимы особые интенсивные меры.
Функциональная анатомия гипоталамуса.
Расположение гипоталамуса. Гипоталамус представляет собой небольшой отдел головного мозга весом около 5 грамм. Гипоталамус не обладает четкими границами, и поэтому его можно рассматривать как часть сети нейронов, протягивающейся от среднего мозга через гипоталамус к глубинным отделам переднего мозга, тесно связанным с филогенетически старой обонятельной системой. Гипоталамус является вентральным отделом промежуточного мозга, он лежит ниже (вентральнее) таламуса, образуя нижнюю половинку стенки третьего желудочка. Нижней границей гипоталамуса служит средний мозг, а верхней — конечная пластинка, передняя спайка и зрительный перекрест. Латеральнее гипоталамуса расположен зрительный тракт, внутренняя капсула и субталамические структуры.
Строение гипоталамуса. В поперечном направлении гипоталамус можно разделить на три зоны: 1) Перивентрикулярную; 2) Медиальную; 3) Латеральную.
Перивентрикулярная зона представляет собой тонкую полоску, прилежащую к третьему желудочку. В медиальной зоне различают несколько ядерных областей, расположенных в переднезаднем направлении. Преоптическая область филогенетически принадлежит к переднему мозгу, однако ее относят обычно к гипоталамусу.
От вентромедиальной области гипоталамуса начинается ножка гипофиза, соединяющаяся с адено- и нейрогипофизом. Передняя часть этой ножки носит название срединного возвышения. Там оканчиваются отростки многих нейронов преоптической и передней областей гипоталамуса, а также вентромедиального и инфундибулярного ядер (рис.1 — цифры: 1, 4, 5); здесь из этих отростков высвобождаются гормоны, поступающие через систему портальных сосудов к передней доле гипофиза. Совокупность ядерных зон, в которых содержатся подобные гормон-продуцирующие нейроны, носят название гипофизотропной области. (Рис.1 — участок, обозначенный прерывистой линией).
Отростки нейронов супраоптического и паравентрикулярного ядер (Рис. 1 — цифры 2 и 3) идут к задней доле гипофиза (эти нейроны регулируют образование и высвобождение окситоцина и АДТ, или вазопрессина). Связать конкретные функции гипоталамуса с его отдельными ядрами, за исключением супраоптического и паравентрикулярного ядер, невозможно.
В латеральном гипоталамусе не существует отдельных ядерных областей. Нейроны этой зоны диффузно располагаются вокруг медиального пучка переднего мозга, идущего в растрально-каудальном направлении от латеральных образований основания лимбической системы к передним центрам промежуточного мозга. Этот пучок состоит из длинных и коротких восходящих и нисходящих волокон.
Афферентные и эфферентные связи гипоталамуса. Организация афферентных и эфферентных связей гипоталамуса свидетельствует о том, что он служит важным интегративным центром для соматических, вегетативных и эндокринных функций.
Латеральный гипоталамус образует двухсторонние связи с верхними отделами ствола мозга, центральным серым веществом среднего мозга и с лимбической системой. Чувствительные сигналы от поверхности тела и внутренних органов поступают в гипоталамус по восходящим спинобульборетикулярным путям, которые ведут в гипоталамус, либо через таламус, либо через лимбическую область среднего мозга. Остальные афферентные сигналы поступают в гипоталамус по полисинаптическим путям, которые пока еще не все идентифицированы.
Эфферентные связи гипоталамуса с вегетативными и соматическими ядрами ствола мозга и спинного мозга образованы полиснаптическими путями, идущими в составе ретикулярной формации.
Медиальный гипоталамус обладает двусторонними связями с латеральным, и, кроме того, он непосредственно получает сигналы от некоторых остальных отделов головного мозга. В медиальной области гипоталамуса существуют особые нейроны, воспринимающие важнейшие параметры крови и спинномозговой жидкости: то есть эти нейроны следят за состоянием внутренней среды организма. Они могут воспринимать, например, температуру крови, водноэлектролитный состав плазмы или содержание гормонов в крови.
Через нервные механизмы медиальная область гипоталамуса управляет деятельностью нейрогипофиза, а через гормональные — аденогипофиза. Таким образом, эта область служит промежуточным звеном между нервной и эндокринной системой.
Гипоталамус и сердечно-сосудистая система.
При электрическом раздражении почти любого отдела гипоталамуса могут возникнуть реакции со стороны сердечно-сосудистой системы. Эти реакции, опосредованные в первую очередь симпатической системой, а также ветвями блуждающего нерва, идущими к сердцу, свидетельствуют о важном значении гипоталамуса для регуляции гемодинамики со стороны внешних нервных центров.
Раздражение какого-либо отдела гипоталамуса может сопровождаться противоположными изменениями кровотока в разных органах (например, увеличением кровотока в скелетных мышцах и одновременным снижением в сосудах кожи). С другой стороны, противоположные реакции сосудов какого-либо органа могут возникать при раздражении разных зон гипоталамуса. Биологическое значение подобных гемодинамических сдвигов можно понять лишь в том случае, если рассматривать их в связи с другими физиологическими реакциями, сопровождающими раздражение этих же подталомических зон. Иными словами, гемодинамические эффекты раздражения гипоталамуса входят в состав общих поведенческих или гомеостатических реакций, за которые отвечает этот центр.
В качестве примера можно привести пищевые и защитные поведенческие реакции, возникающие при электрическом раздражении ограниченных участков гипоталамуса. Во время защитного поведения артериального давления и кровоток в скелетных мышцах повышаются, а кровоток в сосудах кишечника снижается. При пищевом поведении возрастает артериальное давление и кровоток в кишечнике, а кровоток в скелетных мышцах уменьшается. Аналогичные изменения гемодинамических параметров наблюдаются и во время других реакций, возникающих в ответ на раздражение гипоталамуса, например при терморегуляторных реакциях или половом поведении.
За механизмы регуляции гемодинамики в целом (то есть артериального давления в большом кругу кровообращения, сердечного выброса и распределения крови), действующие по принципу следящих систем, отвечают нижние отделы ствола мозга. Эти отделы получают информацию от артериальных баро- и химорецепторов и механорецепторов предсердий и желудочков сердца и посылают сигналы к различным структурам сердечно-сосудистой системы по симпатическим и парасимпатическим эфферентным волокнам. Такая бульбарная саморегуляция гемодинамики в свою очередь управляется высшими отделами ствола мозга, и в особенности гипоталамуса. Эта регуляция осуществляется благодаря нервным связям между гипоталамусом и преганглионарными вегетативными нейронами. Высшая нервная регуляция сердечно-сосудистой системы со стороны гипоталамуса участвует во всех сложных вегетативных реакциях, для управления которыми простой саморегуляции недостаточно, к таким регуляциям можно отнести: терморегуляцию, регуляцию приема пищи, защитное поведение, физическую деятельность и так далее.
Приспособительные реакции сердечно-сосудистой системы во время работы. Механизмы приспособления гемодинамики при физической работе представляют теоретический и практический интерес. При физической нагрузке повышается сердечный выброс (главным образом в результате увеличения частоты сокращений сердца) и одновременно возрастает кровоток в скелетных мышцах. В то же время кровоток через кожу и органы брюшной полости снижается. Эти приспособительные циркуляторные реакции возникают практически одновременно с началом работы. Они осуществляются центральной нервной системой через гипоталамус.
У собаки при электрическом раздражении латеральной области гипоталамуса на уровне мамиллярных тел возникают точно такие же вегетативные реакции, как и при беге на тредбане. У животных в состоянии наркоза электрическое раздражение гипоталамуса может сопровождаться локомоторными актами и учащением дыхания. Путем небольших изменений положения раздражающего электрода можно добиться независящих друг от друга вегетативных и соматических реакций. Все эти эффекты устраняются при двусторонних поражениях соответствующих зон; у собак с такими поражениями исчезают приспособительные реакции сердечно-сосудистой системы к работе, и при беге на тредбане, такие животные быстро устают. Эти данные свидетельствуют о том, что в латеральной области гипоталамуса расположены группы нейронов, отвечающие за адаптацию гемодинамики к мышечной работе. В свою очередь эти отделы гипоталамуса контролируются корой головного мозга. Неизвестно, может ли осуществляться такая регуляция изолированным гипоталамусом, так как для этого необходимо, чтобы к гипоталамусу поступали особые сигналы скелетных мышц.
Гипоталамус и поведение.
Электрическое раздражение маленьких участков гипоталамуса сопровождается возникновением у животных типичных поведенческих реакций, которые столь же разнообразны, как и естественные видоспецифические типы поведения конкретного животного. Важнейшими из таких реакций являются оборонительное поведение и бегство, пищевое поведение (потребление пищи и воды), половое поведение и терморегуляторные реакции. Все эти поведенческие комплексы обеспечивают выживание особи и вида, и поэтому их можно назвать гомеостатическими процессами в широком смысле этого слова. В состав каждого из этих комплексов входят соматорный, вегетативный и гормональный компоненты.
При локальном электрическом раздражении каудального кольца у бодрствующей кошки возникает оборонительное поведение, которое проявляется в таких типичных соматорных реакциях, как выгибание спины, шипение, расхождение пальцев, выпускание когтей, а также вегетативными реакциями — учащенным дыханием, расширением зрачков и пилоэрекцией в области спины и хвоста. Артериальное давление и кровоток в скелетных мышцах при этом возрастают, а кровоток в кишечнике снижается. Такие вегетативные реакции связаны главным образом с возбуждением адренергических симпатических нейронов. В защитном поведении участвуют не только соматорная и вегетативная реакции, но и гормональные факторы.
При раздражении каудального отдела гипоталамуса болевые раздражения вызывают лишь фрагменты оборонительного поведения. Это свидетельствует о том, что нервные механизмы оборонительного поведения находятся в задней части гипоталамуса.
Пищевое поведение, также связанное со структурами гипоталамуса, по своим реакциям почти противоположно оборонительному поведению. Пищевое поведение возникает при местном электрическом раздражении зоны, расположенной на 2-3 мм дорзальнее зоны оборонительного поведения. В этом случае наблюдаются все реакции, характерные для животного в поисках пищи. Подойдя к миске, животное с искусственно вызванным пищевым поведением начинает есть, даже если оно не голодно, и при этом пережевывает даже несъедобные предметы.
При исследовании вегетативных реакций можно обнаружить, что такое поведение сопровождается увеличенным слюноотделением, повышением моторики и кровоснабжения кишечника и снижением мышечного кровотока . Все эти типичные изменения вегетативных функций при пищевом поведении служат как бы подготовительным этапом к приему пищи. Во время пищевого поведения повышается активность парасимпатических нервов желудочно-кишечного тракта.
Принципы организации гипоталамуса.
Данные систематических исследований гипоталамуса при помощи локального электрического раздражения свидетельствуют о том, что в этом центре существуют нервные структуры, управляющие самыми разнообразными поведенческими реакциями. В опытах с использованием других методов — например, разрушения или химического раздражения — это положение было подтверждено и расширено.
Пример: афагия (отказ от пищи), возникающая при поражениях латеральных областей гипоталамуса, электрическое раздражение которых приводит к пищевому поведению. Разрушение медиальных областей гипоталамуса, раздражение которых тормозит пищевое поведение (центров насыщения), сопровождается гиперфагией (чрезмерным потреблением пищи).
Области гипоталамуса, раздражение которых приводит к поведенческим реакциям, широко перекрываются. В связи с этим пока еще не удалось выделить функциональные или анатомические скопления нейронов, отвечающих за то или иное поведение. Так, ядра гипоталамуса, выявляемые при помощи нейрогистологических методов, лишь приблизительно соответствуют областям, раздражение которых сопровождается поведенческими реакциями. Таким образом, нервные образования, обеспечивающие формирование целостного поведения из отдельных реакций, не следует рассматривать как четко очерченные анатомические структуры (на что могло бы натолкнуть существование таких терминов, как “центр голода” и “центр насыщения”).
Нейронная организация гипоталамуса, благодаря которой это небольшое образование способно управлять множеством жизненно важных поведенческих реакций и нейрогуморальных регуляторных процессов, остается загадкой.
Возможно, группы нейронов гипоталамуса, отвечающие за выполнение какой-либо функции, отличаются друг от друга афферентными и эфферентными связями, медиаторами, расположением дендритов и тому подобное. Можно предположить, что в малоизученных нервных цепях гипоталамуса заложены многочисленные программы. Активизация этих программ под влиянием нервных сигналов от вышележащих отделов мозга (например, лимбической системы) и сигналов от рецепторов и внутренней среды организма может приводить к различным поведенческим и нейрогуморальным регуляторным реакциям.
Функциональные расстройства у людей с повреждениями гипоталамуса
У человека нарушения деятельности гипоталамуса бывают связаны главным образом с неопластическими (опухолевыми), травматическими или воспалительными поражениями. Подобные поражения могут быть весьма ограниченными, захватывая передний, промежуточный или задний отдел гипоталамуса. У таких больных наблюдаются сложные функциональные расстройства. Характер этих расстройств определяется, кроме всего прочего, остротой (например, при травмах), или длительностью (например, при медленно растущих опухолях) процесса. При ограниченных острых поражениях могут возникать значительные функциональные нарушения, в то время как при медленно растущих опухолях эти нарушения начинают проявляться лишь при далеко зашедшем процессе.
В таблице перечислены сложные функции гипоталамуса и нарушения этих функций. Расстройства восприятия, памяти и цикла сон/бодрствование частично связаны с повреждением восходящих и нисходящих путей, соединяющих гипоталамус с лимбической системой.
Передний отдел гипоталамуса и преоптическая область.

http://studfiles.net/preview/2244387/

Гипоталамус

  • Физиология
  • История физиологии
  • Методы физиологии

Гипоталамус — вентральная часть промежуточного мозга (имеет около 50 пар ядер), получающая импульсы практически от всех внутренних органов и регулирующая деятельность этих органов посредством нервных и гуморальных влияний, в связи с чем его рассматривают как высший вегетативный центр или «мозг вегетативной жизни».

Гипоталамус: строение и функции

Гипоталамус — структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организма.
В состав гипоталамуса входит около 50 пар ядер, которые имеют мощное кровоснабжение. На 1 мм 2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади моторной коры их 440, в гиппокампе — 350, в бледном шаре — 550, в зрительной коре — 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белковых соединений, к которым относятся нуклеопротсиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфекциям, интоксикациям, гуморальным сдвигам.

Функции гипоталамуса:

  • высший центр вегетативной нервной деятельности. При раздражении одних ядер возникают реакции, характерные для симпатической нервной системы, а других ядер — парасимпатической;
  • высший центр регуляции эндокринных функции. Ядра гипоталамуса вырабатывают рилизинг-факторы — либерины и статины, которые регулируют работу аденогипофиза. Аденогипофиз, в свою очередь, вырабатывает ряд гормонов (СТГ, ТТГ, АКТГ, ФСГ, ЛГ), контролирующих работу желез внутренней секреции. Супраоптические и паравентрикулярные ядра продуцируют вазопрессин (АДГ) и окситоцин, которые по аксонам попадают в нейрогипофиз;
  • главный подкорковый центр регуляции внутренней среды организма (гомеостатический центр);
  • центр терморегуляции. При повреждении происходит нарушение отдачи или сохранения тепла за счет изменения просвета сосудов и обмена веществ;
  • центр жажды. При раздражении резко усиливается потребление воды (полидипсия), а разрушение центра приводит к отказу от воды (адипсия);
  • центр голода и насыщения. При раздражении центра голода наступает усиленное потребление пиши («волчий аппетит»), а при раздражении центра насыщения наблюдается отказ от пищи;
  • центр сна и бодрствования. Повреждение центра бодрствования вызывает так называемый летаргический сон;
  • центр удовольствия — связан с регуляцией полового поведения. Опыты с вживлением электродов в этот центр показали, что при предоставлении животному возможности самораздражения (путем нажатия педали, включающей ток, проходящий через вживленные электроды) оно может проводить самораздражение с высокой частотой в течение длительного времени до полного истощения;
  • центр страха и ярости. При раздражении этого центра возникает реакция ярости: при этом кошка рычит, фыркает, бьет хвостом, шерсть у нее становится дыбом, расширяются зрачки.

В гипоталамусе и гипофизе образуются энкефалины и эндорфины, обладающие морфиноподобным действием. Они способствуют снижению стресса и оказывают обезболивающий эффект.
Таблица. Основные функции гипоталамуса.

Строение гипоталамуса

Гипоталамус — небольшая часть промежуточного мозга массой 4-5 г, занимает его вентральный отдел, располагается ниже таламуса, образуя стенки нижней части III желудочка.
Нижняя часть гипоталамуса ограничена средним мозгом, передневерхняя — передней спайкой, терминальной пластинкой и зрительным перекрестом. В гипоталамусе выделяют медиальную и латеральную части, в которых располагается около 50 различных ядер. В медиальной части выделяют переднюю, среднюю (бугровую), заднюю (мамиллярную) ядерные группы. Среди важнейших передних ядер имеются два больших ядра: паравентрикулярное — у стенки III желудочка и супраоптическое — над зрительным перекрестом. В средней группе ядер различают вентромедиальное, дорсомедиальное и аркуатное (воронковое) ядра. В задней группе выделяют заднее ядро и мамиллярные ядра, формирующие мамиллярнос тело. Между ядрами гипоталамуса имеются множество внутри гипоталамических активирующих, тормозных и реципрокных связей.
Нейроны ядер гипоталамуса получают и интегрируют многочисленные сигналы от нейронов многих, если не большинства, частей мозга. К гипоталамусу поступают и обрабатываются сигналы от нейронов лобной и других отделов коры, структур лимбической системы, гиппокампа. В гипоталамус поступает и анализируется информация от сетчатки (по ретиногипоталамическому пути), обонятельной луковицы, вкусовой коры и путей проведения болевых сигналов; о давлении крови, состоянии органов желудочно-кишечного тракта и другие виды информации.
В самом гипоталамусе расположены специализированные чувствительные нейроны, реагирующие на изменения важнейших показателей крови, как части внутренней среды организма. Это термочувствительные, осмочувствительные, глюкочувствительные нейроны. Некоторые из таких нейронов обладают полисенсорной чувствительностью — одновременно реагируют на изменения температуры и осмотического давления или температуры и уровня глюкозы.

Нейроны ядер гипоталамуса являются клетками-мишенями гормонов и цитокинов. В них имеются рецепторы глюкокортикоидных, половых, тиреоидных гормонов, некоторых гормонов аденогипофиза, ангиотензина II. В нейронах гипоталамуса имеются рецепторы ИЛ1, ИЛ2, ИЛ6, ФНО-а, интерферона и других цитокинов.
Поступающая в гипоталамус информация обрабатывается как в отдельных специализированных ядрах, так и в группах ядер, контролирующих сопряженные процессы и функции организма. Результаты ее обработки используются для реализации ряда функций и ответных реакций гипоталамуса, используемых для регуляции многих процессов организма.
Влияние гипоталамуса на процессы и функции ряда систем организма оказывается через секрецию гормонов, изменение тонуса симпатического и парасимпатического отделов ЦНС, влияние на многие структуры мозга, в том числе структуры соматической нервной системы через эфферентные связи с ними. Гипоталамус оказывает влияние на активность коры мозга, работу сердца, давление крови, пищеварение, температуру тела, водно-солевой обмен и многие другие жизненно важные функции организма.
Одной из важнейших функций гипоталамуса является его эндокринная функция, заключающаяся в секреции антидиуретического гормона, окситоцина, рилизинг-гормонов, статинов и регуляции процессов, контролируемых этими гормонами.

Важнейшие центры гипоталамуса

Высшие центры АНС, функция которых заключается в контроле тонуса АНС и процессов, регулируемых АНС. Эти центры и их функции подробно рассмотрены в статье, посвященной автономной нервной системе.
Центры регуляции кровообращения
Представлены совокупностью нейронов ядер медиального и латерального гипоталамуса. У экспериментальных животных стимуляция нейронов среднего (туберального) и заднего ядер гипоталамуса вызывает понижение артериального давления крови и частоты сокращений сердца. Повышение артериального давления крови, ЧСС наблюдается при стимуляции нейронов, прилежащих к форниксу и перифорникальной области латерального гипоталамуса. Влияние гипоталамуса на кровообращение может осуществляться через его нисходящие связи с преганглионарными нейронами ядер ПСНС продолговатого мозга и СНС спинного мозга, а также через его связи с диэнцефальными, лобными и корковыми структурами мозга.
Гипоталамус участвует в интеграции влияний СНС и АНС на функции организма, в том числе в вегетативном обеспечении соматических функций. Повышение активности гипоталамических центров регуляции кровообращения при физическом или психоэмоциональном напряжении сопровождается активацией симпатоадреналовой системы, повышением в крови уровня катехоламинов, увеличением минутного объема и скорости кровотока, активацией клеточного метаболизма. Эти изменения, инициируемые гипоталамусом, создают основу для более эффективного выполнения функций мышечной системы и ЦНС.
Представлен совокупностью термочувствительных нейронов преоптической области и переднего гипоталамуса и нейронов, контролирующих процессы теплопродукции и теплоотдачи. Без центра терморегуляции невозможно поддержание постоянной температуры тела человека. Подробно его функции рассмотрены в главе, посвященной терморегуляции.
Центры голода и насыщения
Представлены совокупностью нейронов латерального ядра гипоталамуса (центр голода) и вентромедиального ядра (центр насыщения). Центры голода и насыщения являются частью структур мозга, которые контролируют пищевое поведение, аппетит и влияют на массу тела человека. Подробнее их функции рассмотрены в главе, посвященной физиологии пищеварения.
Центры сна и пробуждения
Повреждения гипоталамуса у экспериментальных животных и при заболеваниях у человека сопровождаются различными нарушениями сна (изменением продолжительности, бессонницей, нарушением ритма сон — бодрствование). Экспериментальные данные свидетельствуют, о том, что в передней части гипоталамуса располагается центр сна, а в задней — часть нейронов ретикулярной формации, активация которых сопровождается пробуждением (центр пробуждения).
Центр циркадианных ритмов
Нейроны центра располагаются в супрахиазматическом ядре. На нейронах этого ядра заканчиваются аксоны фоточувствительных ганглиозных клеток сетчатки. Повреждение ядра у экспериментальных животных или при заболеваниях у человека сопровождается нарушениями суточных ритмов изменения температуры тела, давления крови, секреции стероидных гормонов. Поскольку нейроны ядра имеют широкие связи с другими ядрами гипоталамуса, то предполагают, что они являются необходимыми для синхронизации функций, контролируемых различными ядрами гипоталамуса. Однако супрахиазматическое ядро скорее всего нс является единственным центром циркадианных ритмов, а частью структур ЦНС, синхронизирующих функции организма. В синхронизации функций принимают участие также эпиталамус и шишковидная железа.
Гипоталамус и половое поведение
Результаты экспериментальных исследований привели к заключению о том, что структуры гипоталамуса имеют важное значение в координации функций АНС, эндокринной и соматической нервной систем, влияющих на половое поведение. Введение в вентромедиальное ядро гипоталамуса половых гормонов инициирует половое поведение экспериментальных животных. Наоборот, при повреждении вентромедиального ядра половое поведение тормозится. Имеется половое различие в строении промежуточного ядра у мужчин и женщин. У мужчин оно в два раза больше, чем у женщин.
Одним из механизмов влияния гипоталамуса на половое поведение является регуляция им секреции гонадотропинов гипофизом. Кроме того, аксоны нейронов паравентрикулярного ядра нисходят к моторным нейронам спинного мозга, иннервирующим бульбокавернозную мышцу.
Гипоталамус и иммунная система
Проницаемость ГЭБ в области гипоталамуса выше, чем в других областях мозга. Через него в гипоталамус свободно проникают ряд цитокинов, образующихся лейкоцитами, кунферовскими клетками и тканевыми макрофагами. Цитокины стимулируют на нейронах гипоталамических ядер специфические рецепторы, и в результате повышения нейронной активности гипоталамус отвечает рядом эффектов. Среди них — усиление секреции субстанции Р, гормона роста, пролактина и кортикотропин рилизинг- гормона, активирующих иммунную систему.
Гипоталамус может оказывать влияние на состояние иммунной системы через регуляцию секреции гормонов гипофизом и прежде всего АКТГ и глюкокортикоидов корой надпочечников. При этом повышение уровня глюкокортикоидов способствует снижению активности процессов воспаления и повышению устойчивости к инфекции. Однако повышение уровня АКТГ на протяжении длительного времени может, наоборот, сопровождаться снижением неспецифической защиты от инфекции, возникновением аллергических реакций, и развитием аутоиммунных процессов.
Цитокины способствуют повышению тонуса центра симпатической нервной системы, внося свой вклад в формирование стрессорной реакции. Кроме того, повышение активности симпатической нервной системы сопровождается повышением количества и активацией Т-лимфоцитов.
Действие цитокинов на нейроны преоптической области и переднего гипоталамуса вызывает повышение уровня установочной точки терморегуляции. Это влечет за собой развитие лихорадочного состояния, одним из проявлений которого является повышение температуры тела и повышение неспецифической защиты организма от инфекции.
Гипоталамус и психические функции
Гипоталамус получает сигналы от коры лобной доли, других областей и от структур лимбической системы. Изменение психического состояния, примером которого может быть состояние психоэмоционального стресса, сопровождается увеличением секреции гипоталамусом кортикотропин рилизинг-гормона и повышением тонуса симпатической нервной системы. Изменение психического состояния может через активацию оси гипоталамус — гипофиз — кора надпочечников и симпатоадреналовой системы оказать существенное влияние на функции и процессы организма, контролируемые этими системами.
Будучи непосредственно связанным двухсторонними связями со структурами лимбической системы, гипоталамус напрямую вовлечен в развитие вегетативного и соматического компонента эмоциональных реакций. Психоэмоциональное возбуждение сопровождается активацией высших гипоталамических центров АНС, под влиянием которых у человека развиваются такие вегетативные проявления эмоций, как учащенное сердцебиение, сухость во рту, покраснение или побледнение лица, усиление потоотделения, увеличение диуреза. Активация гипоталамусом стволовых моторных центров вызывает учащение дыхания, изменение выражения лица, повышение тонуса мышц.

http://www.grandars.ru/college/medicina/gipotalamus.html

Добавить комментарий

1serdce.pro
Adblock detector